Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

The University of Texas Rio Grande Valley

Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

Detecting Hazards at Rail Grade Crossings Using Artificial Intelligence & Deep Learning

NSF Award No. 2112650

Felix Chavez, Gasser Ali, Ph.D., Constantine Tarawneh, Ph.D.

Abstract

Grade crossings are pivotal for rail network safety as they pose significant collision risks between vehicles and trains. The National Highway Traffic Safety Administration reports indicated over 1,600 vehicle-train collisions and 500 human-train incidents in 2020 alone. Continuous efforts by research institutions, transportation agencies, and governmental bodies aim to enhance safety at these crossings through technologies such as sensors and depth cameras. This study explores the use of artificial intelligence (AI) & deep learning (DL) to develop computer vision models for hazard detection.

Introduction & Background

- 1,600 pedestrian-train and 500 vehicletrain collisions in 2020 [1].
- Need for a cost-effective and accurate detection method [2-4].
- Robustness under different conditions such as lighting, weather, type of train, visibility, and others.
- **GOAL:** Explore automated monitoring of grade-crossing hazards using deep learning.

Data and Results

Validation Results

Label	ТР	ΤN	FP	FN	Accuracy	Precision	Recall	F1-Score	AUC	Balanced Accuracy
Hazard	80	797	1	5	0.99	0.98	0.94	0.96	0.97	0.96

Conclusions & Future Work

- Optimal accuracy.
- Future Work:
 - Additional Testing
 - Testing model with live and simulated data.

Acknowledgments

We acknowledge the financial support provided by the NSF CREST Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS) through NSF Award No. 2112650, and the University Transportation Center for Railway Safety (UTCRS) through USDOT Grant No. 69A3552348340.

References

[1] NHTSA, 2023, "Railroad Crossing | NHTSA" [Online].

Figure 1: Examples of Collected Grade Crossing Images.

People on	Grade Crossing								
	Bicyclist								
	Animals								
Animal on	Grade Crossing								
	0 500 100 Figure 2: Distributio	0 1500 2000 2500 3000 Number of Images In of Collected Image	3500 4000 Des						
Confusion Matrix									
			700						
ial: Clear	797	5	600						
Actu	131		500						
			400						
P			300						
tual: Haza	1	80	200						
AC			100						
	Predicted: Clear	Predicted: Hazard							
Figure 3: Confusion Matrix									

Available:https://web.archive.org/web/202 3031141845/https://www.nhtsa.gov/campa ign/railroad-crossing. [Accessed: 07-May-2023].

[2] Sheikh, Y. A., Zhai, Y., Shafique, K., and Shah, M. A., 2004, "Visual Monitoring of Railroad Grade Crossing," E.M. Carapezza, ed., Orlando, FL, p. 654.
[3] Shin, D., Jin, J., and Kim, J., 2021, "Enhancing Railway Maintenance Safety Using Open-Source Computer Vision," Journal of Advanced Transportation, 2021, p. e5575557.

[4] Zhang, Z., Trivedi, C., and Liu, X.,
2018, "Automated Detection of Grade-Crossing-Trespassing near Misses Based on Computer Vision Analysis of Surveillance Video Data," Safety Science,
110, pp. 276–285.

8th Annual STEM Ed Conference, South Padre Island, Texas. February 13 – 15, 2025