
• The UTCRS utilizes its railroad bearing 
testers to perform laboratory experiments 
and collect vibration, temperature, and 
load data at various operating speeds.

• Continuous vibration signatures from test 
bearings are acquired by the onboard 
sensors every 10 minutes at a sampling 
frequency of 5120 Hz for 16 seconds.

• Although there is a complex relationship 
between speed and vibrations, it can be 
captured using machine learning 
techniques.

• Regression machine learning models are 
typically used to predict continuous 
outputs; therefore, this type of models is 
best suited for this task. 

• Converting data to the frequency-domain 
spectrum will highlight critical vibrational 
information not typically captured by the 
time-domain data, later shown in figure 4.
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The railway industry experiences over 1,000 
train derailments annually. This project 
strives to develop AI/ML algorithms to extract 
train speed from the vibration signatures 
collected by the University Transportation 
Center for Railway Safety (UTCRS) wireless 
onboard sensors. Train speed is a required 
input for the developed algorithm that will 
assess bearing health through three-levels of 
analysis. Models such as linear regression, 
support vectors, and random forest 
regression are tested and their performance 
is evaluated using mean absolute error and 
mean squared error.
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• Extensive vibration data is gathered from 
operational bearings equipped with the UTCRS 
onboard monitoring system. 

• Data is preprocessed for experimentation utilizing 
MATLAB.
1. Time-domain to frequency-domain conversion.
2. Critical frequency analysis using envelope 

analysis.
3. Noise reduction. 
4. Normalization of datasets.

• Regression supervised learning.
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Figure 3: Step-by-Step Project Workflow

• The ability of the model to accurately 
predict speed from the acquired 
vibration signatures will allow for real-
time assessment of bearing condition.

• Real-time prediction affords rail 
operators the opportunity to schedule 
proactive maintenance, thus avoiding 
costly and unnecessary train 
stoppages and delays on main lines.

• The developed AI/ML models will be 
integrated into the onboard monitoring 
system’s existing software, followed by 
extensive field testing to assess real-
time performance and reliability.

• Combination of models is a possibility 
to further improve prediction accuracy.
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Figure 4: Data preprocessing steps in determining defect frequencies
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Figure 1: a.) Four Bearing Tester (OB4T) b.) Single 
Bearing Tester (SBT)

Figure 2: Critical Frequency Equations

• After collecting relevant data, it is input 
into a pipeline of several algorithms to 
evaluate model performance.

• Table 1 demonstrates better 
performance of Linear Regression, 
indicating a significant linear 
relationship between the features 
speed, load, and frequency.

Metrics
Linear 

Regression
Random Forest 

Regression
Support Vector 

Regression
Mean Squared Error 1.7 5 431.4
Mean Absolute Error 1 1.4 16.5

Algorithm Performance

Table 1: Algorithm Performance without 
Hyperparameter Tuning
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