Characterization of Continuous Trajectories for Deep ResNet Detected Vehicles and Manually Stitching of Unique IDs at "Gap" Locations

U.S. Department of
 Transportation

Gabriel Doty ${ }^{1}$, Dr. Constantine Tarawneh ${ }^{1}$, Dr. Alireza Talebpour ${ }^{2}$
${ }^{1}$ Department of Mechanical Engineering - The University of Texas Rio Grande Valley
${ }^{2}$ Department of Civil and Environmental Engineering - University of Illinois at Urbana-Champaign

The University of Texas
RioGrandeValley
Center for Multidiscipinanary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

1. Introduction

The US Department of Transportation's Federal Highway Administration started the Next Generation Simulation (NGSIM) and recently the Third Generation Simulation (TGSIM) data programs because there was a need to centralize and efficiently move forward research in traffic prediction, as well as in the advancements of autonomous vehicles. Even through this, there are numerous corners of the traffic prediction research communities that do not utilize their datasets in the best manner due to unidentified inaccuracies. One cause of these inaccuracies are due to "gap" locations. These impede a research team's time and effort.

Fig. 1 Defining Primary \& Secondāry S̄egēents. OP1 represents the first "gap" location. In the global reference image, there are 5 "gap" locations.
2. Purpose

Impact to USDOT Research Community				
Current Process	Time	Future Process	Time	Potential Reduction
1. Obtaining individual images using 4 codes	2 weeks	1. Obtaining batch images using 1 code	<1 day	$\int_{\text {reduction) }}^{\sim}$
2. Preprocessing of data w/o characterization of potential issues	2 months	2. Preprocessing of data with characterization of potential issues	2 weeks	$\square_{\text {reduction) }}^{(\sim 50 \%}$
3. Manually "stitching" or matching unique IDs	1 month	3. Automating process for "stitching" or matching unique IDs	<1 week	$\begin{aligned} & \text { r } \\ & \text { reductio } \end{aligned}$
4. Manually processing data for ALL (42) datasets in project	84 months (7 years)	4. Processing data for ALL (42) datasets in project with automated process	$\begin{gathered} \sim 2 \text { months } \\ \text { or less } \end{gathered}$	$\square_{\text {reduction) }}^{\sim}$
Overall Time Impact:	87.5 months		~ 3 months	$5{ }_{\text {reduction }}^{(09 \%}$

Having a continuous/accurate dataset, along with the understanding of car-following and other microscopic behaviors that exist between vehicles, is critical to furthering the advancement of autonomous vehicles.
cost incurred by the USDOT is approximately $\$ 8,000-$ \$12,000 annually, for a total cost of $\$ 56,000-\$ 84,000$ over the course of 7.5 years. By automating this process, this would reduce the time to accomplish the same task significantly to around 3 months and could potentially save the USDOT \$74,000.
This is because "without empirical microscopic data, plausible but incorrect hypotheses perpetuate in the vacuum [1]."

Fig. 3 Overhead sign "gap" issues: (1) Overhead sign causes an additional "gap" and causes "overused ID" issue; (2) also, vehicle sign and old ID is is iven ato another vehicle overpass or overiead issues identified - each issue occurs numerously)

There are 5 "gap" locations in the global reference image that present issues where the Deep ResNet algorithm re-identifies vehicles, and these issues are prevalent through all 42 datasets. Figure 2 outlines the overall time impact that my work would provide directly. As of right now, steps 2 and 3 in Figure 2 are being done by 2 PhD students at the University of Illinois Urbana-Champaign. To account for the of ilinois Urbana-Champaign. To account for the
time needed to accomplish this task manually, the
\qquad

3. Methodology

A large dataset consisting of vehicles traveling Northbound on I-90/I-94 in Chicago, IL was manually processed in stages 1-3 outlined in Figure 4. Then, the filtering code equation needs to be slightly adjusted to be robust enough to match vehicle IDs while considering uniquely captured characteristics (acceleration, velocity, time) at the particular "gap" location.
 Other issues are captured simultaneously to provide for improved intuition. Additional details about the filtering code and methodology can be found in the briefing folder.

4. Results

After first stage of preprocessing of the data, the filtering code used for the first and second of three overpasses resulted in 100 percent accuracy of matching IDs from the primary segment to the secondary segment. More work needs to be done on the third overpass due to its size, angle, and traffic conditions at that particular segment of

Fig. 5 "Gap" issue results in numerous unique IDs and discontinuities (L). Continuous trajectory result after manually matching all IDs for entire traveled trajectory (R).

The unique IDs were manually matched for the entire trajectory of the dataset used in this study. The manual matching of IDs took approximately one month to fully and correctly identify all vehicles' trajectories. As a result of manually matching IDs, the number of rows decreased from over 76,600 to under 75,850 and the number of unique IDs decreased 45% from 246 unique IDs to 111 unique IDs. A "Master List of Matched IDs" can be found in the briefing folder.
5. Conclusion \& Future Work

Future Work Research Plan		
	Time	
Task	R	
1. Reprocess original dataset (resulting in the initial inputs to compare versus the final targets)	$\mathbf{3}$ weeks	
2. Create code to obtain images in mass batches	$\mathbf{1 - 2}$ week(s)	
3. Edit filtering code to reduce redundancy \& add additional logic	1 month	
4. Apply machine learning on original initial inputs vs final targets	2 months	
Total Time:	~ 4 months	

Fig. 6 Methodology for data preprocessing (1-3) \& processing (4-5)
Additional intuition was gained and therefore additional logic needs to be created and applied to strengthen the robustness of the filtering code. ocation logic needs to be added to account for 2 additionally identified "gap" locations where overhead highway signs caused certain vehicles to receive new unique IDs. Once additional logic is created and applied successfully, machine learning techniques could be applied to automate the process and "stitch" the IDs together instead of filtering and matching IDs. There is limited research out there that has been tackling this issue
6. Acknowledgement The work presented here is sponsored by the CREST MECIS center under NSF Award No. 2112650 and the DDETFP under US DOT Award No. 693JJ32345192

7. References

Coifman, Beniminin, and Lizhe Li. "A A Critical Evaluation of the Next
Generation Simultation (NGGsiln

