

SVD-GRU: Robust Software Vulnerability Detection using Bayesian Gated Recurrent Unit Orune Aminul, Advisor: Dr. Dimah Dera University of Texas Rio Grande Valley

INTRODUCTION

Software systems are prone to code defects or vulnerabilities, resulting in several problems such as deadlock, hacking, information leakage, and system failure. This research aims to develop a software vulnerability detection robust framework using a Bayesian gated recurrent unit (SVD-GRU) that simultaneously predicts vulnerability in source code and quantifies uncertainty in the prediction.

Table I: Statistics of the five different types of Common Weakness Enumeration (CWE) vulnerabilities

Vulnerable Class	Associated Flaws				
	Improper Restriction of Operations within the				
CWE-119	Bounds				
	of a Memory Buffer				
CWE-120	Classic Buffer Overflow				
CWE-469	Use of Pointer Subtraction to Determine Size				
CWE-476	NULL Pointer Dereference				
CWE-other	Buffer Access with Incorrect Length Value, Use of Uninitialized Variable, Improper Input Validation				

PURPOSE AND HYPOTHESIS

Traditional Deep neural networks (DNNs) are unreliable and lack uncertainty quantification (or model confidence), which is crucial in high-stake applications, including healthcare, economy, and cyberinfrastructures [1], [2]. Our main contributions in the proposed work are to:

- Quantify uncertainty through the network layers and non-linearities.
- Develop a robust framework that detects security vulnerabilities in software source codes.
- Learn the mean and variance of the predictive distribution, where the mean detects the vulnerability, and the covariance reflects the **uncertainty** in the predicted decision.
- Compare with the state-of-the-art methods in the literature and evaluate the robustness of the proposed model.

MATERIALS AND METHODS

Data Preprocessing

The proposed SVD-GRU model is validated on a dataset containing over one million C/C++ source codes with five different types of CWE vulnerabilities (CWE-119, CWE-120, CWE-469, CWE-476, CWE-others) [3].

The SVD-GRU only deals with inputs having real-valued matrix representation. So, we need to convert each source codes into some vector form. This process is similar to Natural Language Processing (NLP) which includes **Tokenization** and word-to-vector Embedding

- At first, the sample code is parsed to extract tokens with a sequence length L
- Each token (variable, operators, keyword, arguments etc.) are than converted to vector representation
- Next, these vectors are embedded to further obtain into $L \times K$ representation

Fig 1: Illustration of the proposed software vulnerability detection approach based on Bayesian gated recurrent unit. (a) The input source code is tokenized into a token sequence of variable length τ and embedded into the $\tau \times K$ matrix representation. (b) The Bayesian GRU model extracts features of the input source code from the embedding matrix and processes these features through the propagation of the variational moments. (c) The internal structure of a single GRU hidden state passes important information from the data and eliminates irrelevant ones. (d) An expanded view of the reset gate shows the interconnections between the input, x(t), hidden state, s(t-1), and reset gate output, r(t), variables. (e) The output fully connected layer classifies extracted features to detect the class vulnerability and provides the uncertainty associated with the prediction through the covariance matrix.

Model Implementation

Treating the code file as sequential data, Gated Recurrent Unit (GRU) model can be developed. In our **Bayesian GRU setting**

- Input from each time step of the given sample sequence is fed to the GRU units having network parameters (weights and biases) with a prior distribution.
- As illustrated in Figure 1, we would like to obtain the predictive distribution p(y*|X*,D) at the output.

Multi class representing CWE-119, CWE-120, CWE-469, CWE-476, CWE-other, Con under Gaussian noise, and FGSM and BIM adv											
Bayesian SVD-GRU											
Noise level		C1	C2	C3	C4	C5	Combined	Multi-head	C1		
No Noise		98	96.16	99.75	99	97.26	93.52	98	98		
Gaussian	0.1	98	96.16	99.75	99	97.26	93.52	98	97.94		
	0.2	97.8	96.15	99.72	98.8	97.24	93.48	97	94.4		
	0.3	96.5	95.11	98.65	97.5	95.22	91.42	95.7	88.47		
FGSM	0.01	97.9	<mark>96.14</mark>	99.74	98.9	97.25	93.5	97.8	97.6		
	0.05	95.5	<mark>94.12</mark>	98.65	97.4	96.13	90.48	95.5	0		
BIM	0.01	97.9	96.12	99.75	98.9	97.26	93.51	97.5	97.9		
	0.05	95.2	96.1	97.72	97.4	95.22	90.45	94	0		
e u	×10 ⁻²	(a) C	WE-119	Ð	×10 ⁻²	(b) C\	WE-120	(c)	CWE-4		
2.85 2.80 2.75 1.50 1.48 1.46 2.60 2.55 2.00 2.55 2.55											
SNR (dB) SNR (dB) SNR (dB) SNR (dB) SNR (dB)											
u ce	×10 ⁻²	(e) C	WE-Oth	er	×10 ⁻²	(†) Con	nbined Clas	ses (g)	Multi-h		
2.22 2.20 2.18 2.18 2.16 2.14 2.14 2.12 2.12 2.12	× -25	-20 -	-10		4.375 4.325 4.325 4.300 4.225 4.225 4.220 	5 -20 -1	5 -10 -5 0	1.60 1.66 1.64 1.62 1.60 1.58 1.56 1.54 1.54 1.52 -25 -20	-15 -10		
SNR(dR) = SNR(

RESULTS AND DISCUSSION

Fig 2: Average predictive variance of different classes plotted against SNR under Gaussian noise, FGSM and BIM adversarial attack.

significant variance increase for all vulnerability classes empowering 'self-awareness' Higher accuracy with increased noise levels which justifies its 'robustness'

CONCLUSION

The SVD-GRU model demonstrates 'self-awareness' and 'robustness' under high noise levels or stronger adversarial attacks. Such behavior can be used by the model to assess its own performance and alert the user about performance degradation linked to noise or adversarial attacks in high stake applications.

BIBLIOGRAPHY

[1] S. E. Chandy, A. Rasekh, Z. A. Barker, and M. E. Shafiee, "Cyberattack detection using deep generative models with variational inference," Journal of Water Resources Planning and Management, vol. 145, no. 2,p. 04018093, 2019. [2] H. Dam, T. Tran, T. Pham, S. Ng, J. Grundy, and A. Ghose, "Automatic feature learning for predicting vulnerable software components," IEEE Transactions on Software Engineering, vol. 47, no. 1, pp. 67–85, Jan. 2021. [3] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir, P. Ellingwood, and M. McConley, "Automated vulnerability detection in source code using deep representation learning," in Proceedings of the 17th IEEE international conference on machine learning and applications (ICMLA), 2018, pp. 757–762.

Acknowledgments

The authors gratefully acknowledge the Presidential Research Fellowship (PRF) and support received by NJ Health Foundation award under grant No. PC 78-21: UTRGV-Rowan AI Partnership for Fostering Innovation by Bridging Excellence in Research and Student Success. The work was partly supported by the National Science Foundation Awards ECCS-1903466 and OAC-2008690.

UTRGV

