Tverberg plus minus

Imre Bárány

(Alfréd Rényi Institute of Mathematics & University College London)

Abstract

We prove a Tverberg type theorem: Given a set $A \subset \mathbb{R}^d$ in general position with |A| = (r-1)(d+1) + 1 and $k \in \{0, 1, \ldots, r-1\}$, there is a partition of A into r sets A_1, \ldots, A_r (where $|A_p| \leq d+1$ for each p) with the following property. The unique $z \in \bigcap_{p=1}^r \operatorname{aff} A_p$ can be written as an affine combination of the elements in A_p : $z = \sum_{x \in A_p} \alpha(x)x$ for every p and exactly k of the coefficients $\alpha(x)$ are negative. The case k = 0 is Tverberg's classical theorem.