Rigidity of many-component systems

Charles Radin

(The University of Texas at Austin)

Abstract

We consider systems made of many interacting components, both packings of many bodies, and networks of many edges. There are traditional optimization programs for both subjects: densest packings for the former and extremal graphs for the latter. We discuss an outgrowth of these optimization programs: the emergence of phases as the size of the system grows, and the way global quantities such as rigidity are analyzed for large systems.