On non-separable families of positive homothetic convex bodies

Károly Bezdek

(University of Calgary)

Abstract

A finite family \mathcal{B} of balls with respect to an arbitrary norm in \mathbb{R}^d $(d \geq 2)$ is called a non-separable family if there is no hyperplane disjoint from $\bigcup \mathcal{B}$ that strictly separates some elements of \mathcal{B} from all the other elements of \mathcal{B} in \mathbb{R}^d . In this talk we prove that if \mathcal{B} is a non-separable family of balls of radii r_1, r_2, \ldots, r_n $(n \geq 2)$ with respect to an arbitrary norm in \mathbb{R}^d $(d \geq 2)$, then $\bigcup \mathcal{B}$ can be covered by a ball of radius $\sum_{i=1}^n r_i$. This was conjectured by Erdős for the Euclidean norm and was proved for that case by A. W. Goodman and R. E. Goodman [Amer. Math. Monthly 52 (1945), 494-498]. On the other hand, in the same paper A. W. Goodman and R. E. Goodman conjectured that their theorem extends to arbitrary non-separable finite families of positive homothetic convex bodies in \mathbb{R}^d , $d \geq 2$. Besides giving a counterexample to their conjecture, we prove that conjecture under various additional conditions. This is a joint work with Zs. Lángi (Univ. of Tech., Budapest).