Problems and results of the Buchstaber invariant theory for simple polytopes and simplicial complexes

Nikolay Erokhovets

(Moscow State University & Delone Laboratory of Yaroslavl State University) erochovetsn@hotmail.com

Abstract

The Buchstaber invariant is a combinatorial invariant of simple polytopes and simplicial complexes that comes from toric topology [BP]. With each simplicial (n-1)-dimensional complex K on m vertices we can associate a topological space -(m+n)-dimensional moment-angle complex \mathcal{Z}_K with a canonical action of a compact torus T^m . The topology of \mathcal{Z}_K and of the action depends only on the combinatorics of K, which gives a tool to study the combinatorics of polytopes and simplicial complexes in terms of the algebraic topology of moment-angle complexes and vice versa. A Buchstaber invariant s(K) is equal to the maximal dimension of torus subgroups $H \subset T^m$, $H \simeq T^k$, that act freely on \mathcal{Z}_K . If K is not the full simplex, then $1 \leq s(K) \leq m - n$.

The Buchstaber invariant has been studied since 2001 by I. Izmestiev, M. Masuda and Y. Fukukawa, A. Ayzenberg, the author [E1, E2], and some others.

The following questions are in the focus of the theory:

1. To find an effective combinatorial description of s(K). There are two dual combinatorial descriptions corresponding to two descriptions of a torus subgroup: parametrically and as a kernel of a map; and the description in terms of the set N(K) of minimal non-faces. For a polytope P we have s(P) = 1 iff P is a simplex. The case of polytopes with s(P) = 2 is much wider. We will show the criterion for s(K) = 2 in terms of N(K).

2. To describe s(K) for different classes of polytopes and complexes. It is known that for 3-polytopes s(P) = m - 3. A. Ayzenberg showed that $s(\Gamma) = m - \lceil \log_2(\gamma(\Gamma) + 1) \rceil$ for a graph Γ . For an *n*-polytope P with m = n + 3 we have s(P) = 3 iff $|N(P)| \le 7$. M. Masuda and Y. Fukukawa obtained nontrivial results in the important case of $K = \Delta_{n-1}^{m-1} - an(n-1)$ -skeleton of an (m-1)-simplex.

3. To describe the connection with other classical and modern combinatorial invariants such as the chromatic number $\gamma(K)$ and the bigraded Betti numbers. A. Ayzenberg noted that s(K) can be considered as a generalization of $\gamma(K)$. It is known that s(P) can not be calculated if only the

f-vector of P is given. The natural question is to find the connection with the bigraded Betti numbers of K.

4. To find lower and upper bounds for the Buchstaber invariant. Now we know that

$$\left[\frac{m}{n+1}\right] \leqslant m - \gamma(K) + s(\Delta_{n-1}^{\gamma-1}) \leqslant s(K) \leqslant m - \lceil \log_2(\gamma(K) + 1) \rceil.$$

5. To describe the behaviour under constructions and operations on polytopes and complexes. For example, $|s(P) - s(P')| \leq 1$ if the polytope P' is obtained from P by an *i*-flip, $2 \leq i \leq n-1$, and $s(P) + 1 \leq s(P') \leq s(P) + 2$, if P' is obtained from P by cutting off a vertex. We have

 $s(P) + s(Q) \leq s(P \times Q) \leq s(P) + s(Q) + \min\{m_1 - n_1 - s(P), m_2 - n_2 - s(Q)\}.$

References

- [BP] V. M. Buchstaber, T. E. Panov, Torus actions and their applications in topology and combinatorics, Providence, R.I.: American Mathematical Society, 2002. (University Lecture Series; V.24).
- [E1] N. Erokhovets, Buchstaber Invariant of Simple Polytopes, arXiv: 0908.3407.
- [E2] N. Erokhovets, Criterion for the Buchstaber invariant of simplicial complexes to be equal to two, arXiv:1212.3970.