
Schedule of talks.

Thursday (April 18)
Morning session

9:00-9:40

Francis Edward Su (Harvey Mudd College)

Combinatorial fixed point theorems

Abstract. The Brouwer fixed point theorem and the Borsuk-
Ulam theorem are beautiful and well-known theorems of topology.
It is perhaps less well-known that the Borsuk-Ulam theorem implies
the Brouwer fixed point theorem, and that these theorems both admit
combinatorial analogues. In particular, Sperner’s lemma is equivalent
to the Brouwer fixed point theorem, and Tucker’s lemma is equiva-
lent of the Borsuk-Ulam theorem. With these theorems, I will trace
recent connections, applications, and generalizations—some of which
includes research with undergraduates.
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Thursday (April 18)
Morning session

9:45-10:25

Marjorie Senechal (Smith College)

Crystals and nanoclusters: a geometry puzzle?

Abstract. As B. N. Delone once said, “Tradition ascribes to
Plato the discovery of the five regular convex solids . . . and Fe-
dorov discovered the five parallelohedra.” Indeed, for a century after
Fedorov’s 1885 discovery, the parallelohedra were the more momen-
tous for crystallography, because they characterize periodic crystal
structures. A century after Fedorov, the discovery of quasicrystals
overthrew the periodicity paradigm. Now crystallographers are turn-
ing to Plato again, modeling condensed matter not by tilings but
by dense packings and coverings of tetrahedral and icosahedral nan-
oclusters. I will outline the geometry questions this new viewpoint
poses.
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Thursday (April 18)
Morning session

10:50-11:30

Nikolay Erokhovets (Moscow State University & Delone
Laboratory of Yaroslavl State University)

Problems and results of the Buchstaber invariant theory
for simple polytopes and simplicial complexes

Abstract. The Buchstaber invariant is a combinatorial invariant
of simple polytopes and simplicial complexes that comes from toric
topology [BP]. With each simplicial (n−1)-dimensional complexK on
m vertices we can associate a topological space – (m+n)-dimensional
moment-angle complex ZK with a canonical action of a compact torus
Tm. The topology of ZK and of the action depends only on the
combinatorics of K, which gives a tool to study the combinatorics of
polytopes and simplicial complexes in terms of the algebraic topology
of moment-angle complexes and vice versa. A Buchstaber invariant
s(K) is equal to the maximal dimension of torus subgroups H ⊂ Tm,
H ' T k, that act freely on ZK . If K is not the full simplex, then
1 6 s(K) 6 m− n.

The Buchstaber invariant has been studied since 2001 by I. Iz-
mestiev, M. Masuda and Y. Fukukawa, A. Ayzenberg, the author
[E1, E2], and some others.

The following questions are in the focus of the theory:
1. To find an effective combinatorial description of s(K). There

are two dual combinatorial descriptions corresponding to two descrip-
tions of a torus subgroup: parametrically and as a kernel of a map;
and the description in terms of the set N(K) of minimal non-faces.
For a polytope P we have s(P ) = 1 iff P is a simplex. The case of
polytopes with s(P ) = 2 is much wider. We will show the criterion
for s(K) = 2 in terms of N(K).
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2. To describe s(K) for different classes of polytopes and com-
plexes. It is known that for 3-polytopes s(P ) = m− 3. A. Ayzenberg
showed that s(Γ) = m − dlog2(γ(Γ) + 1)e for a graph Γ. For an n-
polytope P with m = n+ 3 we have s(P ) = 3 iff |N(P )| 6 7. M. Ma-
suda and Y. Fukukawa obtained nontrivial results in the important
case of K = ∆m−1

n−1 – an (n− 1)-skeleton of an (m− 1)-simplex.
3. To describe the connection with other classical and modern

combinatorial invariants such as the chromatic number γ(K) and the
bigraded Betti numbers. A. Ayzenberg noted that s(K) can be con-
sidered as a generalization of γ(K). It is known that s(P ) can not be
calculated if only the f -vector of P is given. The natural question is
to find the connection with the bigraded Betti numbers of K.

4. To find lower and upper bounds for the Buchstaber invariant.
Now we know that[

m

n+ 1

]
6 m− γ(K) + s(∆γ−1

n−1) 6 s(K) 6 m− dlog2(γ(K) + 1)e.

5. To describe the behaviour under constructions and operations
on polytopes and complexes. For example, |s(P ) − s(P ′)| 6 1 if the
polytope P ′ is obtained from P by an i-flip, 2 6 i 6 n − 1, and
s(P ) + 1 6 s(P ′) 6 s(P ) + 2, if P ′ is obtained from P by cutting off
a vertex. We have

s(P )+s(Q) 6 s(P×Q) 6 s(P )+s(Q)+min{m1−n1−s(P ),m2−n2−s(Q)}.

References

[BP] V. M. Buchstaber, T. E. Panov, Torus actions and their applica-
tions in topology and combinatorics, Providence, R.I.: American
Mathematical Society, 2002. (University Lecture Series; V.24).
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Thursday (April 18)
Morning session

11:35-12:15

Alexey Garber (Moscow State University; Delone Lab, Yaroslavl)

with Dirk Frettlöh (Bielefeld University)

Tilings with unique vertex corona

Abstract. The well-known Local Theorem by N. Dolbilin estab-
lishes local conditions on tile neighbourhoods of a tiling T that are
necessary and sufficient for T being crystallographic.

Theorem 1 (N. Dolbilin). A tiling T in d-dimensional Euclidean of
hyperbolic space is crystallogrpaphic iff the following two conditions
hold for some k ≥ 0:

(1) For the numbers N(k) of k-coronae (i.e. union of all tiles in the
k-th surrounding of a given tile) holds: N(k + 1) = N(k), and
N(k) is finite.

(2) Si(k + 1) = Si(k) for 1 ≤ i ≤ N(k),

where Si(k) denotes the symmetry group of the i-th k-corona.
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The question arises whether there are local conditions on the ver-
tex neighbourhoods that imply that the tiling is crystallographic. In
particular, if all vertex coronas are congruent, is the tiling necessarily
crystallographic?

In this talk we will present several possible families of tilings with
unique vertex corona and post discuss which translation group such
a tiling can have.
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Thursday (April 18)
Afternoon session

2:00-2:40

A. O. Ivanov (Moscow State University)

with V. N. Sal’nikov

Probabilities of Optimal Networks Structures

Abstract. Steiner problem of finding a shortest tree connecting
a given finite subset M of a metric space is known as NP -complete,
see [1], and the main reason is an exponentially large number of possi-
ble structures of the trees which can connect the terminal set M and
possible additional vertices-forks. Similar difficulties appear in other
one-dimensional geometrical variational problems, such as minimal
fillings problem [2], etc.

We suggest to investigate probabilistic characteristics of possible
combinatorial structures of optimal networks, i.eẇe want to find out
which structures appear quite often, and which — rather rarely.

As a main example we take minimal fillings of finite additive met-
ric spaces, see definitions below. For that case a probabilistic model
is constructed. Under this model, for a pair of binary trees with n
vertices of degree 1 a formula characterizing the ratio of probabilities
of these trees appearance as minimal filling structures is obtained [4].
An asymptotic behavior of the probabilities under n→∞ is investi-
gated.

Necessary definitions. A connected weighted graph
(
G = (V,E), ω

)
with vertex set V , edge set E, and non-negative weight function
ω : E → R is a filling of a finite metric space (M,ρ), see [2], if M ⊂ V
and for any points x, y from M the inequality ρ(x, y) ≤ dω(x, y) is
valid, where dω is a distance function generated by ω on M . Namely,
dω(x, y) is equal to the least possible weight of the pass connecting
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x and y in G. A filling with the least possible weight is referred as
minimal filling. Also recall, that a finite metric space (M,ρ) is said to
be additive, if its distance function ρ can be generated by a generating
tree, a weighted tree (T, ω), whose degree 1 vertex set coincides with
M , and such that ρ(x, y) = dω(x, y) for any x, y ∈ M , see [3]. In [2]
it is proved that minimal fillings of finite additive metric spaces are
exactly their generating trees.

References

[1] M. R. Garey, R. L. Graham and D. S. Johnson, Some NP -complete
geometric problems, Eighth Annual Sympȯn Theory of Comput.,
pp. 10–22, 1976.
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Thursday (April 18)
Afternoon session

2:45-3:25

Filip Morić (École Polytechnique Fédérale de Lausanne)

with Radoslav Fulek, Yoshio Okamoto, Tibor Szabó and Csaba D.
Tóth

Planar straight-line graphs with free edge lengths

Abstract. We study straight-line embeddings of planar graphs
subject to metric constraints. A planar graph G is free in a planar
“host” graph H, G ⊆ H, if the edges of G have arbitrary positive
lengths, that is, for any choice of positive lengths for the edges of G,
the host H has a straight-line embedding that realizes these lengths.
A planar graph G is extrinsically free in H, G ⊆ H, if any constraint
on the edge lengths of G depends on G alone, irrespective of any
additional edges of the host H.

We characterize all planar graphs G that are free in any host H,
G ⊆ H. We also give an almost complete characterization of the
planar graphs G that are extrinsically free in any host H, G ⊆ H; the
status of the cycles Ck, k ≥ 5, remains open, leading to a new variant
of the celebrated carpenter’s rule problem. Separating triangles, and
separating cycles in general, play an important role in our arguments.
We show that every star is free in a 4-connected triangulation, which
has no separating triangle.
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Thursday (April 18)
Afternoon session

3:50-4:30

Gregory Minton (Massachusetts Institute of Technology)

Optimal codes in projective spaces

Abstract. It is known that, in projective spaces, a regular sim-
plex which is also a 1-design is an optimal code. In fact, such a sim-
plex is universally optimal. However, as the space and the number of
points vary, these codes do not always exist. In real and complex pro-
jective spaces they seem to only exist in special cases, but in projective
spaces over the quaternions and octonions their existence seems to be
more common. In fact, simple dimension-counting arguments suggest
that they should exist for a range of cardinalities, and moreover they
should exist in positive-dimensional families. We show that these ar-
guments can be formalized by computer-assisted proof; these proofs
demonstrate rigorously that a true solution exists in a small neigh-
borhood of a given approximate solution. The crux of our method
is finding a minimal set of equalities determining a regular simplicial
1-design. Using this approach we prove the existence of a laundry
list of new universally optimal codes, including tight 2-designs in the
quaternionic and octonionic projective planes.

11



Thursday (April 18)
Afternoon session

4:35-4:55

Alexey Eremin (Moscow State University)

Minimal fillings and minimal metric hulls of infinite
metric spaces

Abstract. The problem concerning minimal fillings of finite
metric spaces was posed by Ivanov and Tuzhilin. The objective is to
find a weighted graph of minimum weight among all weighted graphs
joining the points of a given finite metric space provided that for
any two points in the metric space the distance between them is not
greater than the weight of the shortest path connecting them in the
graph. We discuss possible generalizations of this problem to the
case of infinite metric spaces. In the first part of this talk we discuss
properties of existing notion of minimal filling in the case of infinite
metric space and present some limit theorems. In the second part we
introduce new notion of minimal metric hull of metric space (which in
some natural sense generalizes notion of minimal filling) and discuss
its properties and question arising.
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Friday (April 19)
Morning session

9:00-9:40

Peter Dragnev (Indiana University – Purdue University Fort
Wayne)

Characterizing stationary logarithmic points

Abstract. The product of all N(N − 1)/2 possible distances for
a collection of N points on the circle is maximized when the points
are (up to rotation) the N -th roots of unity. There is an elegant ele-
mentary proof of this fact. In higher dimensions the problem becomes
much more complicated. For example, if the points are restricted to
the unit sphere in 3-space, the result is known for N = 1 – 6, and 12.
We will derive a characterization theorem for the stationary points in
d-space and illustrate it with a couple of examples of optimal config-
urations that are new in the literature.
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Friday (April 19)
Morning session

9:45-10:25

Robert Erdahl (Queens University, Canada)

Commensurate Vectors, Commensurate Triangles and
the Proliferation of Combinatorial Types of

Parallelohedra

Abstract. One of the more striking, indeed daunting discover-
ies in the theory of parallelohedra is the astounding rate of growth
of combinatorial types with dimension. For example, by restricting
attention to the primitive types where the dual cell corresponding to
each vertex is a simplex, this growth has been reported by Peter Engel
to be:

Dimension 2 3 4 5 6
No. of types 1 1 3 222 185× 106

The data available for the general case is much more forbidding.
An important problem in the theory of parallelohedra is to gain some
insight into how such rapid growth is possible.

In my talk I will describe a few simple construction that explain
in part how rapid growth can occur in higher dimension, and even be
expected. The constructions have as starting point the simple notions
of commensurate lattice vector and commensurate lattice triangle. A
commensurate lattice vector in the ambient lattice is one that can be
translated so that it fits inside the parallelohedron, and similarly, a
commensurate lattice triangle is one that can be translated so that it
fits inside the parallelohedron.
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Friday (April 19)
Morning session

10:50-11:30

Hiroshi Nozaki (Aichi University of Education)

Eigenvalues of large distance sets and its applications

Abstract. A finite subset X of the Euclidean space is called
an s-distance set if the number of distances between distinct vectors
of X is equal to s. We obtain a graph which has s relations from
an s-distance set by a natural way. We show that if the size of an s-
distance set is greater than some value then an eigenvalue of the graph
becomes some special value, so called the generalized Larman-Rogers-
Seidels ratio. By this result, we give some result about a Euclidean
representation of a graph having s relations, and we also prove a new
lower bound for the maximum distance of integral point sets. Here if
an s-distance set satisfies all distances are integers, then it is called
an integral point set.
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Friday (April 19)
Morning session

11:35-12:15

Hirotake Kurihara (Kitakyushu National College of Technology)

with Takayuki Okuda (Tohoku University)

A characterization of great antipodal sets of complex
Grassmannian manifolds by designs

Abstract. In this talk, we give a characterization of great an-
tipodal sets of complex Grassmannian manifolds as certain designs
with the smallest cardinality.

We first give design theory on complex Grassmannian manifolds.
Let Gm,n be the set of m-dimensional subspaces of Cn, and Gm,n is
called the complex Grassmannian manifold. It is well known that Gm,n
is a symmetric space which is isomorphic to U(n)/(U(m) × U(n −
m)). By the highest weight theory, a complex irreducible unitary
representation of U(n) is determined by its highest weight, and the
set of the irreducible representations of U(n), up to isomorphisms,
can be regarded as the set of n-tuples of integers. Let us denote by
C0(Gm,n) the functional space consisted of all C-valued continuous
functions on Gm,n. The index of an irreducible representation Hµ

of U(n) in C0(Gm,n) must be of the form of (µ, 0, . . . , 0,−µ), where
µ ∈ Pm := {µ = (µ1, . . . , µm) | µ1 ≥ · · · ≥ µm ≥ 0, µi ∈ Z}, and⊕

µ∈Pm
Hµ is dense in C0(Gm,n). Let T be a finite subset of Pm.

Then a nonempty finite subset X of Gm,n is called a T -design if for
any f ∈

⊕
µ∈T Hµ,

1

ν(Gm,n)

∫
Gm,n

fdν =
1

|X|
∑
a∈X

f(a)

holds, where ν is a U(n)-invariant Haar measure on Gm,n.
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In the case of spherical designs, tight spherical odd designs relate
to antipodal pairs. In particular, X is a tight spherical 1-design if and
only if X is an antipodal pair {x,−x}. We second give the definition
and some properties of great antipodal sets on Gm,n. For a ∈ Gm,n, we
denote by sa the point symmetry at a. A subset S of Gm,n is called
an antipodal set if sa(b) = b for any a, b ∈ S. An antipodal set is a
generalization of an antipodal pair on spheres. An antipodal set S
is called great if |S| = max{|S ′| | S ′ is an antipodal set}. Then it is
known that S = {Span{eik}mk=1|1 ≤ i1 < i2 < · · · < im ≤ n} is a great
antipodal set of Gm,n, where {ei}ni=1 is an orthonormal basis of Cn.

In Gm,n, we can also characterize great antipodal sets by certain
tight designs. Let E := {(1i)}mi=1 and F := {(2, 1i−1)}mi=2 in Pm. The
following are our results.

1. A great antipodal set S is a E ∪ F -design.

2. Let X be a E ∪F -design on Gm,n. Then |X| ≥
(
n
m

)
(= |S|) holds.

3. Let X be a subset of Gm,n with |X| =
(
n
m

)
. Then the following

are equivalent: (a) X is a E∪F -design, (b) X is a great antipodal
set.

The last result yields a characterization of great antipodal sets by
using design theory.
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Friday (April 19)
Afternoon session

2:00-2:40

Ilya Dumer (University of California Riverside)

with Olga Kapralova (University of California Riverside)

Minimum weights of Boolean polynomials on the
spherical Hamming layers

Abstract. Consider m-variate Boolean polynomials of degree r
or less. Our goal is to find the minimum Hamming weights that these
polynomials take on the sets of binary m-tuples of a given Ham-
ming weight b. From the coding perspective, this setting defines a
punctured binary Reed-Muller code RM(r,m) whose positions form
a Hamming sphere of weight b in the m-dimensional binary space.
In this talk, we specify some recursive properties of this single-layer
spherical construction RM(r,m, b) and define its code parameters for
any values of the input parameters m, r, and b. We also describe cod-
ing techniques that increase minimum distances of codes RM(r,m, b)
and obtain codes that meet the upper Griesmer bound.
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Friday (April 19)
Afternoon session

2:45-3:25

Masanori Sawa (Nagoya University)

On Hilbert identities and designs on the simplex

Abstract. A Hilbert identity is a representation of (x21+· · ·+x2n)r

as a sum of 2r-th powers of real linear forms α1x1 + · · · + αnxn,
which originally stems from Hilbert’s solution of Waring’s Problem
in number theory. There is a beautiful connection with cubature
formulas on spheres. In this talk I will introduce this connection and
related facts, and show a new relation between spherical cubature and
”simplical” cubature. I will discuss what we know when translating
spherical cubature into identities, or conversely, translating identities
with cubature terminology. You can also enjoy many collaborators
who appear in my talk!
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Friday (April 19)
Afternoon session

3:50-4:30

Takayuki Okuda (Tohoku University)

A new construction of spherical designs by using Hopf
maps

Abstract. It is known that one can make spherical t-designs
on a d-sphere Sd from a spherical t-design on Sd−1 and an interval t-
design on the open interval (−1, 1) with respect to the weight function
wd(s) := (1− s2)(d−2)/2 ([Rabau–Bajnok, J. Approx. Theory (1991)],
[Wagner, Monatsh. Math. (1991)]).

In this talk, we generalize the fact above and applying it for Hopf
maps, then we have an algorithm to making spherical designs on S3

[resp. S7] from spherical designs on S2 and S1 [resp. S4 and S3].
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Friday (April 19)
Afternoon session

4:35-5:15

Anton Nikitenko (Saint Petersburg State University, Chebyshev
Lab, Delone Lab)

with Oleg R. Musin (University of Texas at Brownsville)

Optimal packings of disks on torus

Abstract. We consider packings of congruent circles on a square
flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings,
with the maximal circle radius. Similar problems of packing disks on
different flat tori have been studied previously by R. Connelly ([1, 2])
and W. Dickinson ([3]); the particular case of the square torus is
especially interesting due to a practical reason: D. Usikov has shown
it to be important for the problem of ”super resolution of images”
([8]). In our work([5]) we have adopted an algorithm used to find
optimal arrangements of spherical caps on a sphere ([6]) for the flat
case and with its help have found optimal arrangements for six, seven
and eight circles (optimal packings of up to five circles have been
previously determined by Dickinson et al. in [4]).
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Saturday (April 20)
Morning session

9:00-9:40

Alexander Barvinok (University of Michigan)

Thrifty approximations of convex bodies by polytopes

Abstract. Given a d-dimensional convex body C containing the
origin in its interior and a real t > 1, we seek to construct a polytope
P with as few vertices as possible such that P is contained in C and C
is contained in tP . I plan to present a construction which breaks some
long-held records and is nearly optimal for a wide range of parameters
d and t. The construction uses the maximum volume ellipsoid, the
John decomposition of the identity and its recent sparsification by
Batson, Spielman and Srivastava, Chebyshev polynomials, and some
tensor algebra.
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Saturday (April 20)
Morning session

9:45-10:25

Vladimir D. Tonchev (Michigan Technological University)

New invariants for incidence structures

Abstract. New isomorphism invariants for incidence structures
based on a connection between trace codes and Galois geometry are
discussed. Using these invariants, a new Hamada type characteriza-
tion of the classical finite geometry designs is proved.
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Saturday (April 20)
Morning session

10:50-11:10

Brittany Terese Fasy (Carnegie Mellon University)

with Sivaraman Balakrishnan, Fabrizio Lecci, Alessandro Rinaldo,
Aarti Singh, and Larry Wasserman

Statistical inference for persistent homology

Abstract. Persistent homology is a method for probing topo-
logical properties of point clouds and functions. The method involves
tracking the birth and death of topological features as one varies a
tuning parameter. Features with short lifetimes are informally consid-
ered to be ”topological noise.” In this paper, we bring some statistical
ideas to persistent homology. In particular, we derive confidence in-
tervals that allow us to separate topological signal from topological
noise.
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Saturday (April 20)
Morning session

11:15-11:35

David L. Millman (University of North Carolina at Chapel Hill)

Computing the discrete Voronoi diagram with only
double precision

Abstract. The nearest neighbor transform of a binary image
assigns to each pixel the index of the nearest black pixel – it is the
discrete analog of the Voronoi diagram. Implementations that com-
pute the transform use numerical calculations to perform geometric
tests, so they may produce erroneous results if the calculations re-
quire more arithmetic precision than is available. Liotta, Preparata,
and Tamassia, in 1999, suggested designing algorithms that not only
minimize time and space resources, but also arithmetic precision.

A simple algorithm using double precision can compute the nearest
neighbor transform: compare the squared distances of each pixel to
all black pixels, but this is inefficient when many pixels are black. We
develop and implement efficient algorithms, computing the nearest
neighbor transform of an image in linear time with respect to the
number of pixels, while still using only double precision.
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Saturday (April 20)
Morning session

11:40-12:00

Alexander Magazinov (Steklov Mathematical Institute)

Fans of faces of parallelohedral tilings

Abstract.
A parallelohedron is a convex polytope P that admits a face-to-face

tiling TP of Rd by its translates.
The central conjecture concerning parallelohedra is the one by

G. Voronoi (see [2]).

Conjecture 1. Every d-dimensional parallelohedron P is affinely
equivalent to a Dirichlet-Voronoi domain for some d-dimensional lat-
tice.

Conjecture 1 has not been proved or disproved so far in full gener-
ality. However, several significant partial results have been obtained.
For many approaches the study of local structure of TP is important.

Definition 1. Denote by π the projection along linF onto the com-
plementary affine space (linF )compl. Then there exists a complete k-
dimensional poyhedral fan fan(F ) (the fan of F ) that splits (linF )compl

into convex polyhedral cones with vertex π(F ), and a neighborhood
U = U(π(F )) such that every face F ′ ⊃ F corresponds to a cone
C ∈ fan(F ) satisfying

π(F ′) ∩ U = C ∩ U.

Remark 1. Speaking informally, fan(F ) has the same combinatorial
structure as the transversal section of TP in a small neighborhood of
F .
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In 1929 B.N. Delaunay (see [1]) proved the key result.

Theorem 2. Let P be a d-dimensional parallelohedron and F be a
(d − 3)-imensional face of TP . Then fan(F ) has one of the 5 com-
binatorial types shown in Figure 1. Moreover, each of these types is
realized for some 3-imensional tiling.

a) b) c) d) e)

Figure 1: 5 possible fans of (d− 3)-faces

We give a combinatorial proof of Theorem 2. Also we prove a
general result on fans of faces.

Definition 2. Let

ν(F ) = card {P ′ ∈ T (P ) : F ⊂ P ′}.

ν(F ) is called the valence of the face F .

Theorem 3. Let P be a d-dimensional parallelohedron and F be a
(d− k)-imensional face of TP . Then

ν(F ) ≤ 2k.

Theorem 3 immediately implies

Corollary 4. Given k ∈ N, there exists a set of complete k-dimensional
polyhedral fans

{Ck1 , Ck2 , . . . , CkN(k)}
such that for every d, every d-parallelohedron P and every (d−k)-face
F of TP the fan of F is isomorphic to some Cki .
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