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Abstract

The present work is a numerical study of a highly nonlinear partial differ-
ential equation (PDE). This PDE is associated with an electrical configura-
tion with a silicon carbide non-ohmic resistor and has the form of a diffusion
equation with a diffusion constant that is dependent on field strength. We
have numerically solved this nonlinear PDE through Fourier decomposition
and an iterative boundary condition matching. The accuracy of our solution
has been checked by comparing results against the linear limit of the non-
linear PDE and by comparing the results with a time evolution of the initial
data for the system. A discussion is presented of the methods utilized, and
the accuracy of the results obtained.
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2 Background

This problem is related to a problem brought to our attention by Alexander
Kazhanov of National Electric Coil. The objective of our work is to provide
a numerical analysis of the steady state behavior of electrical coatings whose
resistivity is non-ohmic, that is, non-constant.

Simulating this physical setup amounts to solving a one-dimensional
diffusion-type nonlinear partial differential equation numerically. This equa-
tion is

∂2U

∂x2
= f(U)

∂U

∂t
, (1)

where

f(U) =
e−|E|

1 + |E|
, (2)

and where the relationship between variables E and U is given by

U = Ee|E|. (3)

In the equations above, x is a dimensionless space variable, t is a dimen-
sionless time variable and E is a dimensionless description of the electric
field in the non-ohmic resistor. We want to solve this problem on the do-
main x ∈ [0, xmax], t ∈ [0, tmax], subject to boundary conditions

∂U/∂t = V0 cos t at x = 0, (4)

U → 0 as x→ xmax. (5)

Although most physical parameters have been absorbed into the vari-
ables, we are still left with two physical parameters, namely xmax, repre-
senting the length of the coating, and V0. The size of V0 determines how
nonlinear our problem is. As our problem becomes more nonlinear it be-
comes more difficult to be solved. The nonlinearity of this problem presents
itself through the nonlinear factor f(U). In Fig. 1 we can see a sample plot
of f(U) for the particular choice V0 = 1 and xmax = 1.
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Figure 1: This plot shows the values that f(U) takes on our solution domain,
in logarithmic scale, for the case where V0 = 1 and xmax = 1. As we can see
from this plot, the smallest value of f(U) is approximately 0.4.

3 Numerical Scheme

In this section we describe a method for solving Eq. (1) for U(x, t) in the
domain x ∈ [0, xmax], t ∈ [0, tmax].

3.1 Fourier series decomposition

We seek a solution U(x, t) which is periodic in time, therefore our solution
approach is based on expressing U(x, t) as a Fourier series.

U =
∞∑
n=1

An(x) cos(nt) +Bn(x) sin(nt). (6)

The reason why we exclude the n = 0 term from the sum is the fact that
the term A0(x) is the time average of the function U(x, t), which must be
zero because the input voltage has a time average of zero. It follows that the
variable U is oscillatory and has a time average of zero. Now, the problem
at hand is to solve for each An(x) and Bn(x).
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The decomposition presented in Eq. (6) allows us to convert Eq. (1) into

∞∑
n=1

[
d2An
dx2

cos(nt)+
d2Bn
dx2

sin(nt)

]
= f(U)

∞∑
n=1

[
nBn cos(nt)−nAn sin(nt)

]
.

(7)
From this equation we can derive expressions for d2A/dx2 and d2B/dx2. The
details of this derivation are relegated to Appendix 9.1. These expressions
are

d2An(x)

dx2
=

1

π

∫ +π

−π
cos(nt)f(U)

( ∞∑
m=1

mBm cosmt−mAm sinmt

)
dt, (8)

d2Bn(x)

dx2
=

1

π

∫ +π

−π
sin(nt)f(U)

( ∞∑
m=1

mBm cosmt−mAm sinmt

)
dt. (9)

These expressions for d2An/dx
2 and d2Bn/dx

2 allow us to compute An(x)
and Bn(x) given An(x=0) and Bn(x=0). The problem to be solved has
been reduced to solving the system of ordinary differential equations stated
in Eq. (8) and Eq. (9) for each n = 1, 2, . . .

For numerical computations we must truncate our Fourier series after a
certain number of modes have been included. This number of modes must
be small enough that numerical solutions can be computed in a reasonable
amount of time, yet not so small that the truncation error introduced makes
the numerical solutions useless. The constant N will denote the number of
modes to be kept in the Fourier expansion. One of the goals of this work is
to determine an optimal value for N . For the remainder of this thesis, we
keep only the first N terms.

3.2 Enforcing boundary conditions

In Sec. 3.1 we have determined how to obtain a numerical solution for An(x)
and Bn(x) given An(x=0) and Bn(x=0). These values must be chosen in
order to satisfy the boundary conditions of the nonlinear PDE subject of
this work. The first condition, stated on Eq. (4) can be satisfied by simply
choosing dA1(x=0)/dt = V0 and setting all other initial derivatives to zero.
The boundary condition at xmax, stated in Eq. (5) can only be met by care-
fully choosing An(x=0) and Bn(x=0). A method for choosing these initial
mode values is discussed in the following section.
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3.3 Iterative mode start

We must choose An(x=0) and Bn(x=0) in order to enforce Eq. (4). This
choice cannot be made directly because it is not initially known how An(x)
and Bn(x) develop in x. Instead, a reasonable approach for solving this
problem is to use a ”shooting method”; we first perform a numerical ex-
periment, observe the end behavior An(x=xmax) and Bn(x=xmax), and
then adjust initial mode values accordingly. We interpret An(x=xmax) and
Bn(x=xmax) as functions of An(x=0) and Bn(x=0).

For any smooth function f(x, y), a first order Taylor expansion gives

f(x+ δx, y + δy) ≈ f(x, y) +
∂f

∂x
δx+

∂f

∂y
δy, (10)

where δx and δy are assumed to be small. For suitable choices of δx and δy
it is possible to make f(x+ δx, y + δy) go very close to zero. This idea can
be applied to solve our problem, where instead of f(x+ δx, y+ δy) we have
functions An(x=xmax) and Bn(x=xmax) for each n.

We must make the assumption that An(x=xmax) and Bn(x=xmax) are
continuous and well behaved functions of An(x=0) and Bn(x=0). Then,
small changes in An(x= 0) and Bn(x= 0) will produce small changes in
An(x=xmax) and Bn(x=xmax).

It is useful to consider An(x) and Bn(x) at any x to be the components
of N dimensional vectors. We could choose vectors δAn and δBn to be
small adjustments on vectors An(x=0) and Bn(x=0) such that these small
adjustments bring An(x=xmax) and Bn(x=xmax) closer to the zero vector.
This adjustment process is iterated until all An and Bn modes are small.
Our computer implementation tests this condition by requiring

N∑
n=1

(A2
n +B2

n) ≤ 10−12. (11)

The method we propose for obtaining optimal initial data for An(x=0) and
Bn(x=0) consists of applying the following two equations iteratively

0 = An(xmax) = A∗n(xmax)+

N∑
k=1

(
∂A∗n(xmax)

∂Ak(x=0)
δAk+

∂A∗n(xmax)

∂Bk(x=0)
δBk

)
, (12)

0 = Bn(xmax) = B∗n(xmax)+
N∑
k=1

(
∂B∗n(xmax)

∂Ak(x=0)
δAk+

∂B∗n(xmax)

∂Bk(x=0)
δBk

)
, (13)
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where A∗n(xmax) and B∗n(xmax) are the mode sizes at x = xmax while
An(xmax) and Bn(xmax) are the new mode sizes at x = xmax At each it-
eration these expressions give a total of 2N equations for 2N unknowns.
Solving this system allows us to obtain vectors δAn and δBn, which can
then be applied to the initial mode values

An(x=0) = A∗n(x=0) + δAn (14)

Bn(x=0) = B∗n(x=0) + δBn. (15)

Equations(12)-(15) are applied iteratively until Eq. (11) is satisfied.

4 Computer Implementation

The solution scheme described in Sec. 3 has been implemented in C++. In
the following subsections we discuss specific characteristics and techniques
utilized in this implementation.

4.1 Domain discretization

The domain of our problem is x ∈ [0, xmax] and t ∈ [0, 2π]. We have
discretized this domain uniformly so that xi = i∆x where ∆x = xmax/(Nx−
1) is the uniform spacing between x grid points. The index i runs from 0
up to Nx − 1. Analogously, tj = j∆t where ∆t is the uniform spacing
2π/(Nj − 1)between time grid points, and j is an index running from 0 up
to Nj − 1.

The choice of a uniform domain for time is based on the sinusoidal nature
of our base functions sin(nt), cos(nt), sin(2nt), etc. The numerical integra-
tion of sinusoidal functions tends to be more accurate when the function is
sampled on a uniform grid.

4.2 Spatial integration

After we have established our choice for An(x=0) and Bn(x=0) for each n we
must advance these mode values in space according to Eq. (8) and Eq. (9).
Assuming we have An(x=xi) and Bn(x=xi) for each n, we obtain, from
Eqs .(8),(9)

A′′m(xi+1) =
1

π

Nt∑
j=1

cos(mtj)f(U)

(
N∑
n=1

nBn(xi) cosntj−nAm(xi) sinntj

)
∆t,

(16)
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B′′m(xi+1) =
1

π

Nt∑
j=1

sin(mtj)f(U)

(
N∑
n=1

nBn(xi) cosntj−nAm(xi) sinntj

)
∆t,

(17)
where prime (’) denotes d/dx. Then a simple Euler step allows to obtain

A′n(xi+1), B
′
n(xi+1), An(xi+1) and Bn(xi+1) from

A′n(xi+1) = A′n(xi) +A′′n(xi+1)∆x, (18)

An(xi+1) = An(xi) +A′n(xi+1)∆x, (19)

B′n(xi+1) = B′n(xi) +B′′n(xi+1)∆x, (20)

Bn(xi+1) = Bn(xi) +B′n(xi+1)∆x. (21)

This Euler step is repeated until i+ 1 = Nx − 1 after which the compu-
tation is complete.

5 Numerical Results

5.1 Decrease of mode magnitude

One of the most important practical problems to be considered in this study
is the magnitude fall off of the modes, as the mode number gets large. For
numerical computations, it is necessary to understand how these modes fall
in magnitude in order to determine whether it is possible to neglect higher
modes in order to reduce computational cost. A method for determining this
fall off is to perform a simulation with a large number of modes, and then
compare mode magnitudes in order to observe how significant each mode is
with respect to the rest. In Fig. 2 and Fig. 3 we can see how modes An and
Bn decay as the mode number increases.
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Figure 2: The decrease in log10(An(x=0)), the x = 0 mode amplitude, with
increasing n. In this model xmax = 10 and V0 = 128. Though there is
an erratic behavior around N ≈ 20, we clearly observe an overall drop in
magnitude as n increases.

6 Quality Assessment

One of the most important aspects of numerical simulation is the ability
to prove results are reliable. A given numerical scheme may provide fast
and highly precise answers, but if we are unable to trust these results, the
numerical scheme is useless. We have applied several different methods to
verify the correctness of our numerical simulations.

6.1 Parameter adjustment

The first and most basic method for testing the reliability of our results is to
make minor modifications to our computational parameters to test whether
this insignificant parameter variation produces a significant variation in our
numerical result. For example, when we discretize our space domain we
arbitrarily choose Nx, which is the number of grid points in x. We could
choose Nx = 1000 or Nx = 999, but there is no particular reason why we
could prefer one option over the other. Then, if using Nx yields solution

7



Figure 3: The decrease in log10(Bn(x=0)), the x = 0 mode amplitude, with
increasing n. In this model xmax = 10 and V0 = 128. Though there is
an erratic behavior around N ≈ 20, we clearly observe an overall drop in
magnitude as n increases.

U1(x, t) and using Nx = 999 yields solution U2(x, t) we would hope that
U1 ≈ U2. Otherwise, how could we choose which numerical solution is
correct between U1 and U2? If U1 and U2 are very different numerical
solutions this would show our solution method is unstable and therefore
ineffective. Varying parameters does not prove a method is correct, but it
may provide useful evidence if a method is incorrect. Among the parameters
we varied to test the precision of our results are time and space grid sizes,
number of modes, initial voltages and the value of parameter xmax.

Fortunately, our solution method proved to be stable under all these
tests. One of these tests is included as an example. In Fig. 4 we can see a
comparison between the numerical solution U(x, t) obtained using 2 and 3
modes.
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Figure 4: The top figure shows numerical solutions using N = 3 and N = 2,
while the bottom plot shows the difference between these two solutions, in
logarithmic scale. As we can see, our solution scheme is stable to changing
mode numbers; the two results are extremely close.

9



6.2 Linearized limit

The difficulty of solving the problem in question is its high nonlinearity,
caused by the term

f(U) =
e−|E|

1 + |E|
.

Note that f(U)→ 1 as E → 0, which turns our problem into a linear PDE,
that can be readily solved analytically. The magnitude of E is controlled
by the initial driving potential V0. For sufficiently small choices of V0 our
simulation should render a solution U(x, t), which is very similar to the
solution of Eq. (1) when we set f(U) = 1, that is ∂2U/∂x2 = ∂U/∂t. We
can follow the procedure suggested in Sec. 3.1 to obtain

d2An(x)

dx2
= nBn(x), (22)

d2Bn(x)

dx2
= −nAn(x). (23)

The details of this simplification are left to Appendix 9.2. Then we choose
that all modes other than A1 are set to 0 at x = 0, and then it is easy to
see that higher modes will never be introduced in this calculation. We are
left with the task of solving the system of equations:

A′′1(x) = B1(x) and B′′1 (x) = −A1(x), (24)

subject to the initial conditions A1(x = 0) = V0, B1(x = 0) = 0, and the
conditions at xmax, A1(x) → 0 and B1(x) → 0 as x → ∞. This system
has been solved with the use of Wolfram Mathematica 8.0 software. The
analytical solution is:

A1(x) =
√

2V0

[
e−z(a sin z + b cos z) + ez(c sin z + d cos z)

]
(25)

B1(x) =
√

2V0

[
e−z(b sin z − a cos z) + ez(c cos z − d sin z)

]
, (26)

where:

a ≡ 1

h

[
e2zm + cos(2zm)− sin(2zm)

]

b ≡ −1

h

[
e2zm + cos(2zm) + sin(2zm)

]

10
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Figure 5: Comparison between an analytical result and a numerical result
(top) and an error plot with the difference between these two solutions (bot-
tom), for the almost linear case, where V0 = 0.01. As we can see, the match
between these two solutions is nearly perfect.

c ≡ 1

h

[
e−2zm + cos(2zm) + sin(2zm)

]

d ≡ 1

h

[
e−2zm + cos(2zm)− sin(2zm)

]
,

where

z ≡ x√
2

, zm ≡
xmax√

2
and h ≡ 4(cosh(2zm) + cos(2zm)).

We performed a series of numerical experiments to verify the quality of
our results using these methods. Our results proved to be convincing, for
the choices of V0 = 0.01 and V0 = 0.1. We can see these results for a fixed
x-value, in Fig. 5 and Fig. 6.
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Figure 6: Solution for V0 = 0.1. We can see from the top graph, the ana-
lytical and the numerical solutions start to show some deviation from one
another. This is to be expected, as f(U) ≈ 1 is only a good approximation
for very small V0. As we can see from the bottom graph, changing V0 from
0.01 to 0.1 increases the error by a factor of 100.
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6.3 Finite difference post-processing

An alternative method for determining the success of the solution obtained
is to simply verify whether Eq. (1) has been satisfied at each point in our x, t
grid. For a point (xi, tj) in our discretized domain, the condition to check is

U(xi+1tj)− 2U(xi, tj) + U(xi−1, tj)

∆2
x

−

f(U(xi, tj))
U(xi, tj+1)− U(xi, tj−1)

2∆t
≤ C, (27)

where

f(U(xi, tj)) =
e−|E(xi,tj)|

1 + |E(xi, tj)|
. (28)

One of the limitations of this method is to determine what is an accept-
able error bound C, and to take into account the magnitude fluctuations
of U(xi, tj). In certain regions our errors may appear to be quite large (or
quite small), yet this simply means U(xi, tj) is larger (or smaller) in this
region. Normalizing the error presented in Eq. (27) by U(xi, tj) seems to be
an appropriate alternative, although this introduces a new problem which
is how to evaluate the quality of our solution when U(xi, tj) is a very small
number.

In Fig. 7 we can see an example of a normalized finite difference error.
In Fig. 6.3 we can see the corresponding numerical solution U(x, t), which
serves as a reference to understand where normalized errors should be larger
(e.g. where U(x, t) is very small).

6.4 Finite difference evolution

As a final numerical test, we decided to test whether our numerical solution
could reproduce itself under a finite difference evolution scheme. As in
Sec. 6.3, we solve Eq. (27) for U(xi, tj+1), to obtain

U(xi, tj+1) =
∆t

∆x2
U(xi+1, tj)− 2U(xi, tj) + U(xi−1, tj)

f(U(xi, tj))
+ U(xi, tj). (29)

Using Eq. (29) we may derive a simple yet effective method for verifying the
quality of the numerical solution method we have proposed. Our solution
scheme produces initial data for U(x = 0, t), using this data, alongside our
boundary conditions we can simply evolve U(xi, tj) in time, and then check
whether this solution coincides with the numerical results we have obtained.
These two solution strategies are quite different in their methodology; if they
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Figure 9: A comparison at x = 0.5 between the solutions obtained by Fourier
analysis and the solution obtained by finite difference evolution in time. As
we can see, the two solutions match almost perfectly.

match this would decisively prove the reliability of our results. We can see
one such comparison for x = 0.5.

7 Conclusions

In this work we have presented a numerical solution scheme for solving
Eq. (1). Most of our efforts have been directed toward testing the precision
and accuracy of our solution.

All of our numerical experiments indicate that the behavior of U(x, t)
is dominated by the modes A1 and B1. This result is quite surprising,
yet positive, as it allows us to compute our numerical solutions much more
quickly.

The numerical solution scheme we have proposed has proven to be ef-
fective against most of our tests. We successfully showed this solution is
compatible with the linearized limit case, where E → 0. For the vast major-
ity of our solution domain we managed to prove this solution is consistent
with Eq. (1) when using finite differences as a check.
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Unfortunately, our finite difference evolution results only give us a partial
understanding of the behavior of our physical problem. While we were able
to show that evolving our initial data for U(x = 0, t) does replicate our
numerical solution, we were not able to truly understand what happens
after we continue to evolve our results for more than one cycle. As a matter
of fact, we would have liked to observe how this solution replicates itself
over and over in cycles of 2π. Although we were able to see such behavior,
this solution replicated itself exactly, which is very suspicious numerically.
We could not devise a test for proving this replication was in fact correct,
and not just a computational mistake.

8 Future Work

The work presented in this thesis could be extended and improved in several
ways. Perhaps one of the most important improvements to be performed
is to implement a better time evolution scheme, in order to provide faster
and more reliable results for the test presented in Sec. 6.4. Any implicit
time-stepping, such as Crank-Nicolson, could achieve this goal.

Additionally, it would be nice to see how much nonlinearity our numerical
solution scheme can handle effectively. Most of our work was done using
voltages on the range between 1 and 5, while our xmax was usually set to
either 1 or 3. The use of more clever numerical schemes (or faster computers)
would allow to handle larger parameter values with finer grid sizes; thus
giving us a better understanding of the nonlinearity present in this problem.

An alternative option for improving the results we have obtained would
be to implement adaptive step sizes in our spatial stepping, thus making our
results more accurate in regions where Eq.(1) is more nonlinear.
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9 Appendices

9.1 Fourier analysis derivation

In Sec. 3 we obtained

N∑
n=1

[
d2An
dx2

cos(nt)+
d2Bn
dx2

sin(nt)

]
= f(U)

N∑
n=1

[
nBn cos(nt)−nAn sin(nt)

]
.

(30)
The objective is to solve for d2An(x)/dx2 and d2Bn(x)/dx2 from Eq. (30).
We must first recall the following identities, valid for n,m ∈ N

1

π

∫ +π

−π
sin(nt) sin(mt)dt = δmn, (31)

1

π

∫ +π

−π
cos(nt) cos(mt)dt = δmn, (32)

1

π

∫ +π

−π
sin(nt) cos(mt)dt = 0. (33)

We can multiply both sides of Eq. (30) by cos(mt), and then integrate over
[−π,+π]. The left-hand side of this new equation is∫ +π

−π
cos(mt)

N∑
n=1

[
d2An
dx2

cos(nt) +
d2Bn
dx2

sin(nt)

]
dt (34)

=

N∑
n=1

[
d2An
dx2

∫ +π

−π
cos(mt) cos(nt)dt+

d2Bn
dx2

∫ +π

−π
cos(mt) sin(nt)dt

]
.

We apply Eq. (33) to the first part of this expression, and Eq. (32) to the
second part. Then the expression on Eq. (34) is equivalent to

d2Am(x)

dx2

∫ +π

−π
cos2(mt)dt = π

d2Am(x)

dx2
. (35)

Thus, from Eq. (30) we derive an expression for the second spatial derivative
of Am(x),

d2Am(x)

dx2
=

1

π

∫ +π

−π
cos(mt)f(U)

(
N∑
n=1

nBn(x) cos(nt)− nAn(x) sin(nt)

)
dt.

(36)

18



By multiplying Eq. (30) by sin(mt) and then following the same procedure
as before, we obtain an expression for the second spatial derivative of Bn(x),

d2Bm
dx2

=
1

π

∫ +π

−π
sin(mt)f(U)

(
N∑
n=1

nBn cos(nt)− nAn sin(nt)

)
dt (37)

We now notice that f(U) is an even function, therefore the integrand on
Eq. (36) and Eq. (37) is also even. These equations simplify to

d2Am
dx2

=
2

π

∫ +π

0
cos(mt)f(U)

(
N∑
n=1

nBn(x) cos(nt)− nAn(x) sin(nt)

)
dt

(38)

d2Bm
dx2

=
2

π

∫ +π

0
sin(mt)f(U)

(
N∑
n=1

nBn cos(nt)− nAn sin(nt)

)
dt. (39)

9.2 Linearized limit derivation

In Sec. 6.2 we consider the linearized limit f(U) = 1. Applying this assump-
tion to Eq. (8) and Eq. (9) and assuming a truncated sum of N modes we
obtain

d2An(x)

dx2
=

1

π

∫ +π

−π
cos(nt)

(
N∑
m=1

mBm cosmt−mAm sinmt

)
dt, (40)

d2Bn(x)

dx2
=

1

π

∫ +π

−π
sin(nt)

(
N∑
m=1

mBm cosmt−mAm sinmt

)
dt. (41)

Using orthogonality properties presented in Eq. (31), Eq. (32) and Eq. (33)
these equations simplify to

d2An(x)

dx2
=
nBn
π

∫ +π

−π
cos(nt) cos(nt)dt = nBn(x), (42)

d2Bn(x)

dx2
=
−nAn
π

∫ +π

−π
sin(nt) sin(nt)dt = −nAn(x). (43)

9.3 Computation of the Lambert W function

The Lambert W function is an implicit multivalued complex function defined
for any complex z as

z = W (z)eW (z). (44)
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For z real, the Lambert W function is complex multivalued for z < −e−1, it
is real multivalued for −e−1 ≤ z < 0, and it is real single valued for z ≥ 0.
The branch which satisfies W (z) ≥ −1 is called the principal branch of
W (z) and is denoted by W0. The other branch, which satisfies W (z) ≤ −1
is denoted by W−1. Both W0 and W−1 are represented in Fig. 10.

Figure 10: Two real branches of the lambert W function. The dashed line
corresponds toW−1, defined for −e−1 < z < 0. The solid line corresponds
to W0, defined for z ≥ −1

e . This figure was obtained from Ref.[7]

For the purpose of this particular numerical study, the function of in-
terest is z = W (z)e|W (z)|. Therefore, the sign of W (z) is determined by
the sign of z. If z was negative, then W (z) = −W (|z|). Thus, we are only
interested in the evaluation of the branch W0, for z ≥ 0. A numerical imple-
mentation of the lambert function is readily available on the GNU Scientific
Library, as well as on commercial software, such as Maple or Matlab. Two
of the most common numerical techniques utilized for solving for the Lam-
bert W function are Newton’s method, and Halley’s method. A description
of these methods can be found in several numerical analysis textbooks, such
as Ref.[3] or Ref.[4].
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