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Abstract

The forthcoming Low Frequency All Sky Monitor (LoFASM) will be an array
of dipoles working between 10-88 MHz adapted from the Long Wavelength
Array (LWA) design. This array will offer significant advantages over other
projects for the study of radio transients, but its effectiveness will depend
on the geometric details of the array. This thesis presents the results of
theoretical sensitivity calculations for a single 12 antenna array. An optimal
configuration was found that can effectively block terrestrial signals incident
from the horizon at certain ”resonant” frequencies. This configuration will
allow LoFASM to operate in regions with relatively high radio frequency
interference.
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1 Introduction

In the field of radio astronomy, the low frequency band (roughly 10 - 88 MHz)
is relatively unexplored. This is due to various historical and technological
reasons. Recently, there are several new projects that are investigating this
particular frequency range. Such projects include the Long Wavelength Ar-
ray (LWA) in New Mexico and the Low Frequency Array (Lofar) in Europe.
The primary science goals for these instruments include the study of 1) iono-
spheric, solar and space weather; 2) solar and exosolar planets; 3) cosmic
evolution; 4) acceleration, turbulence and propagation of signals in the in-
terstellar medium (ISM) and 5) transient phenomena [1, 2]. The Center for
Advanced Radio Astronomy (CARA) in collaboration with the University of
New Mexico (UNM) and the Naval Research Laboratory (NRL) are working
on an innovative project focusing on radio transients; the Low Frequency
All Sky Monitor (LoFASM).

The LoFASM instrument is based on technology developed by the LWA
team and will be dedicated to continuous, long-term observations of the low
frequency band. The primary science goals of LoFASM will be to study at-
mospheric, planetary, and astrophysical transient radio events and to design
and test radio frequency interference (RFI) mitigation techniques. Of par-
ticular interest are transient radio signals emitted by neutron star-neutron
star inspirals, neutron star-black hole inspirals, and black hole-black hole
inspirals since these inspiral events are also sources of gravitational waves.
A coincident detection of such a radio transient together with a gravitational
wave event could significantly increase the significance of the gravitational
wave detection. In this way LoFASM may play an important role in the first
detection of gravitational waves.

LoFASM will consist of four stations, each made up of 12 LWA style antenna
stands in a double ring close-packed configuration. The LoFASM stations
will be separated by several thousands of kilometers. The first station will be
built near Port Mansfield, Texas, 63 miles north of the University of Texas
at Brownsville. The second station will be located near the north arm of
the VLA in Socorro, New Mexico. The planned location for the third sta-
tion is near the Cornell University campus in Ithaca, New York. A possible
home for the fourth station will be the Owen’s Valley Radio Observatory,
California. These geographically distinct regions, each observing the same
area of sky, will allow LoFASM to quickly determine the origin of a detected
signal. A signal detected in all four stations is most likely to be of astro-
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nomical origin, while a signal detected at one station and not the others is
most likely to be RFI [3]. The antenna stands and front end electronics are
identical to those developed by the LWA team. Additional hardware spe-
cific to LoFASM, together with the digital processing, are being developed
by the Center for Advanced Radio Astronomy’s Multipurpose Electronics
Lab (CARAMEL) in collaboration with the LWA team.

The proposed placement of the antenna stands within a single LoFASM
station can be found in Figure 1 on page 11. The antenna stands will be
placed in a close-packed configuration, which consists of two concentric rings
of six antenna stands. Following a close-packing of identical spheres, the
radius of the outer ring is fixed at

√
3 times the radius of the inner ring. This

work shows that this double ring configuration maximizes instantaneous
sky coverage at an individual station, while minimizing the effects of RFI
originating from the horizon. The double ring configuration allows for some
interesting combinations of the signals from the inner and outer rings, which
makes the array sensitive to different areas of the sky. When added together
in-phase, the region of maximum sensitivity is directly overhead. When
added at 180 degrees out of phase (i.e. subtracted from each other) the
array will be most sensitive to signals from the horizon. Hence, an analysis
of the signals from the two rings will enable one to constrain the zenith angle
of a source, thereby allowing one to determine its origin.

The remainder of this thesis is organized in the following way. The different
potential sources of radio transients are discussed in Sec. 1.1 which covers
the applications of LoFASM. The optimization and validation of the array
configuration are then presented in Sec. 2, with the results of these calcu-
lations being presented in Sec. 3. Conclusions are given in Sec. 4. Codes
showing the functions used to obtain results are relegated to Appendix A.

1.1 LoFASM and Radio Transients

The primary science goal of LoFASM will be to study radio transients. Ra-
dio transients are burst of radio radiation that can last from micro-seconds
to several days. Some local (within the Solar System) sources of radio
transients are energetic particles striking the atmosphere, solar flares, ra-
dio bursts from Jupiter’s magnetosphere [6] and terrestrial lightning. Other
non-local sources of radio transients include magnetic activity on the sur-
faces of brown dwarfs and particle acceleration in the magnetic fields of flare
stars[4, 5]. Radio pulsars are also known to exhibit giant radio pulses de-
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tectable in the low frequency band [7], as well as rotating radio transients
(RRATs)[12].

Potential, yet currently unconfirmed, sources of radio transients include su-
pernovae, merging neutron stars, coalescing black holes,[8, 9] and Gamma-
ray bursts [11]. The most exciting aspect of radio transient work is the
unforeseen discovery of unknown sources.

LoFASM may prove to be instrumental in the detection and confirmation of
gravitional waves. Neutron star-neutron star inspirals, neutron star-black
hole inspirals, and black hole-black hole inspirals are all potential sources
of gravitational waves that may also emit a burst of low frequency radio
radiation just prior to merger or in the afterglow phase[9]. It has been
predicted that the Advanced Laser Interferometer Gravitational-wave Ob-
servatory (aLIGO) will see several neutron star-neutron star mergers which
LoFASM may be able to confirm by observing the associated radio transient
event [10].

LoFASM will also expand the search for radio pulsars, an exotic type of
star that emits beams of radio waves from its magnetic poles. Pulsars can
exhibit both periodic and transient signals. Unlike normal radio pulsars,
RRATs cannot be detected through time-averaged emission and typically
last for less than 1 second per day. The spin periods of radio pulsars range
from a 1.3 milliseconds to 8.5 seconds [13], while the spin periods associated
with RRATs range from 0.4 to 7 seconds[12]. A LoFASM survey should
yield around 30 pulsars in the first year, with the possibility of new discov-
eries. Such a survey would be sensitive to pulsars with periods longer than
0.5 seconds. The new data obtained by LoFASM will help to further our
understanding of the basic workings of radio pulsars [14].

2 Theoretical Framework

We are interested in finding the optimal configuration of the LoFASM array
in order to maximize its sensitivity to radio transients. In essence, we want
the array to see a large portion of the sky and reject signals coming from
the horizon, which would most likely be RFI. First we need to calculate
the antenna array’s ”normalized beam pattern” which quantifies the array’s
sensitivity to a source in a particular direction. Once this is known it will
be used to calculate three important statistics that will help determine the
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array’s effectiveness at detecting transient signals. These statistics will be
used to determine the optimal array configuration.

2.1 The Normalized Beam Pattern

The array will be modeled as a set of N antennas, each located at distinct
points in space denoted by the displacement vector xj, where the subscript
j runs from 1 to N . Under the plane wave assumption, the electric field at
the location of the jth antenna stand is given by

E = E0p̂e
i(k·xj−ωt), (1)

where k is the wave vector pointing in the direction of propagation, ω is the
angular frequency of the wave, E0 is the scalar amplitude of the wave, and
the unit vector p̂ points in the direction of the electric field’s polarization.
At each antenna, the voltage generated across the terminals by the plane
wave is

Vj(t) = Gn(k,p)E0e
i(k·xj−ωt), (2)

where Gn(k,p) is the antenna’s response to the wave, Vnj is the and the
subscript n denotes the polarization of the antenna. Each antenna stand
is made up of two independent dipole antennas, oriented at 90◦ to each
other. The gain of the North-South (East-West) aligned dipoles is given by
GNS(k,p) (GEW (k,p)).

Since we want the maximum sensitivity of the array to be directly overhead,
the received signals from all the antenna stands will be added in phase.

The resulting summed signal for a given antenna polarization, Sn, is denoted
as

Sn =
∑
j

Vj(t) =
∑
j

Gn(k,p)E0e
i(k·xj−ωt). (3)

The detected average power in the signal is given by

Pn = |Sn|2 =
∑
j,l

|Gn(k,p)|2|E0|2ei(k·(xj−xl)). (4)
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The received power for each polarization is given by

PEW =
∑
j,l

|GEW (k,p)|2|E0|2ei(k·(xj−xl)), (5)

PNS =
∑
j,l

|GNS(k,p)|2|E0|2ei(k·(xj−xl)). (6)

The total power received will be a sum of the two polarizations.

PT = PNS + PEW . (7)

PT =
∑
j,l

(|GNS(k,p)|2 + |GEW (k,p)|2)|E0|2ei(k·(xj−xl)). (8)

We will assume that the source is unpolarized, which means that there is
equal power in each of the two possible polarization states. In order to
account for this we simply add together the received power in each of the
orthogonal polarizations. In this case, the total power takes the form:

PT =
∑
j,l

AT (k)|E0|2ei(k·(xj−xl)), (9)

where

AT (k) = |GNS(k,p0)|2 + |GEW (k,p0)|2 + |GNS(k,p1)|2 + |GEW (k,p1)|2.
(10)

In the above equation, the subscripts on the polarization vectors differentiate
between the two polarization states possible for a plan wave traveling in the k
direction. For a crossed-dipole antenna configuration in the long wavelength
limit lying in the x-y plane, one can show that

AT = A0

(
1 + cos(θ)2

2

)
, (11)

where A0 is a constant that depends on the geometry of the antenna and θ
is the angle from the z-axis.
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Using this one can rewrite Equation 9 as

PT (θ, φ) = A0

(
1 + cos(θ)2

2

)
|E0|2

∑
j,l

ei(k(θ,φ)·(xj−xl)), (12)

where we have explicitly written the directional dependence in terms of
zenith and azimuthal angles, θ and φ. Dividing the above equation by
its maximum possible value, A0|E0|2N2, we obtain the normalized beam
pattern:

B(θ, φ) =

(
1 + cos(θ)2

2

)
1

N2

∑
j,l

ei(k(θ,φ)·(xj−xl)). (13)

The normalized beam pattern is the key to understanding the effectiveness
of the LoFASM array at detecting radio transients. Matlab codes were
developed to calculate this quantity as a function of the array configuration
as well as the source location. A knowledge of the normalized beam pattern
allows us to calculate the array’s minimum detectable flux, the maximum
visible volume as well as the horizon rejection, a statistic that determines
how well the array rejects signals coming from the horizon.

2.2 Determining the Minimum Detectable Flux

The normalized beam pattern will now be used to determine the minimum
detectable flux. Assuming a single source at a sky location given by θ and
φ, the power per unit frequency received by the array is

Ps = AmB(θ, φ)Fs(θ, φ), (14)

where Am is the effective area of the telescope, B is the normalized beam
pattern and Fs is the source flux per unit frequency.

Radio transients, our main focus, only emit finite bursts of radio waves.
These bursts would create an increase in the noise power above that gener-
ated by the sky background. The noise power due to the sky background is
determined by the following expression:
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Pn =

∫
AmB(θ, φ)Iν(θ, φ)dΩ, (15)

where Iν(θ, φ) is the specific intensity of the sky. It is typical to model the
background radiation coming from the sky as a blackbody with temperature
Tsky. In this case, it can be shown that [15]

Iν(θ, φ) =
kbTsky
λ2

. (16)

where kb is Boltzmann’s constant and λ is the wavelength of the wave at the
frequency ν. The equation for the noise power then becomes

Pn = Am

∫
B
kbTsky
λ2

dΩ. (17)

Since kb, Tsys and λ are not dependent on direction, the power may be written
as

Pn =
AmkbTskyΩ0

λ2
, (18)

where

Ω0 =

∫
BdΩ. (19)

Ω0 is known as the antenna beam solid angle and quantifies the size of the
region of the sky that the array can see.

In order for a source to be detectable, the signal power received must be
greater than the noise power. Hence, Ps > Pn. This leads to the following
inequality:

AmB(θ, φ)Fs(θ, φ) >
AmkbTskyΩ0

λ2
. (20)

By solving for Fs(θ, φ) one finds that

Fs(θ, φ) > Fmin(θ, φ), (21)

where Fmin(θ, φ) is defined as the minimum detectable flux for a source
located at θ, φ and is given by:

Fmin(θ, φ) =
kbTskyΩ0

B(θ, φ)λ2
. (22)

Since the maximum value of B(θ, φ) is 1, the smallest value of the minimum
detectable flux is

Fmin =
kbTskyΩ0

λ2
. (23)
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2.3 Visible Volume

A good measure of how effective an instrument is at detecting transient
sources is given by the total volume of space in which a particular source may
be detected. This volume may be calculated using the minimum detectable
flux and the total luminosity, L, of a source.

Given the measured flux of a source, F , with luminosity, L, the distance
between the receiver and the source is given by

r =

√
L

4πF
. (24)

Since Fmin(θ, φ) is the minimum detectable flux of the receiver, the maximum
possible distance that a detectable source could be is given by

rmax(θ, φ) =

√
L

4πFmin(θ, φ)
. (25)

The total visible volume of space is then given by

V =

∫
rmax(θ, φ)3

3
dΩ. (26)

Using Equation 25, the above becomes

V =

∫
1

3

(√
L

4πFmin(θ, φ)

)3

dΩ =

∫
1

3

(
L

4π

) 3
2

Fmin(θ, φ)−
3
2dΩ. (27)

Using Equation 22 for Fmin(θ, φ), the volume may written as

V =

∫
1

3

(
L

4π

) 3
2
(
B(θ, φ)λ2

kbTskyΩ0

) 3
2

dΩ. (28)

The only thing dependent on direction is B(θ, φ), therefore the volume takes
the form

V =
1

3

(
L

4πkbTskyΩ0

) 3
2

λ3γ (29)

where γ is defined as

γ =

∫
B(θ, φ)

3
2dΩ. (30)
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2.4 Horizon Rejection Factor and Array Optimization

Unwanted signals are most likely to originate from the horizon at high zenith
angles. An ideal array would reject such signals while maintaining sensitivity
to signals coming from overhead. The integral of the normalized beam
pattern over the horizon region, as opposed to over the entire sky, is a
measure of the array’s sensitivity to signals coming from the horizon. We
define the following quantity:

H =

∫
π/2−δ<θ<π/2

B(θ, φ)dΩ. (31)

where δ is the angle subtended by the horizon, which we will take to be 10◦.
The ratio of H to the antenna beam solid angle, Ω0, is a measure of how well
the antenna rejects signals from the horizon and admits signals from over-
head. We refer to this ratio as the horizon rejection factor. When optimizing
the array configuration, one would want to minimize this quantity.

The horizon rejection factor can be directly related to the apparent increase
in the sky temperature due to signals from the horizon. Up to now, we
have been modeling the sky brightness as an isotropic blackbody with tem-
perature Tsky. Now we will consider a two component model where the
temperature within the horizon region is Tsky + ∆Th and is Tsky elsewhere.
For this case, the received noise power becomes

Pn =
AmkbTskyΩ0

λ2
+

∫
π/2−δ<θ<π/2

Amkb∆Th
λ2

B(θ, φ)dΩ. (32)

Since all the terms under the integral, except for B(θ, φ), are independent
of θ and φ we can rewrite the above equation using Equation 31 as

Pn =
AmkbTskyΩ0

λ2
+
Amkb∆ThH

λ2
. (33)

After factoring, we find that

Pn =
AmkbTskyΩ0

λ2

(
1 +

∆Th
Tsky

H

Ω0

)
, (34)

By comparing this result to Equation 18, we see that we can define an
equivalent system temperature given by
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Tsys = Tsky(1 +
∆Th
Tsky

H

Ω0
). (35)

The noise power induced in the array by this two component non-isotropic
sky brightness model is equivalent to the noise power induced by an isotropic
sky with temperature Tsys.

For the case where the array is located in a low RFI environment, the second
term in the parenthesis of Equation 35 is small. Hence, the system temper-
ature is simply the isotropic sky temperature independent of the horizon
rejection factor, as expected. In a high RFI environment, the system tem-
perature is dominated by ∆ThH/Ω0. Therefore, minimizing the horizon
rejection factor will minimize the total system temperature and hence the
receiver noise power.

3 Discussion

This section analyzes the properties of the Double Ring Close-Packed config-
uration (see Figure 1 on page 11) and shows that it appears to be an optimal
configuration to reject unwanted RFI coming from the horizon. The size of
the inner radius sets the optimal observing frequency for a station. This
configuration allows for two distinct combinations of the signals from the
inner and outer rings, which makes the array sensitive to different areas of
the sky.
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Figure 1: Double Ring Close-Packed Configuration: The radius of the outer
ring is fixed at

√
3 times the inner radius. When added together in-phase,

the region of maximum sensitivity is directly overhead. When added at 180
degrees out of phase, the array will be most sensitive to signals from the
horizon.

3.1 Optimal Arrangement

For a LoFASM station, the system noise is dominated by two sources: the
Galactic noise background and local RFI. The ideal design of LoFASM aims,
not only to optimize sky coverage, but to be as insensitive as possible to
the local RFI. By adding together in phase the received signals from all
12 antennas, one can numerically calculate the normalized power pattern,
B(θ, φ), for a station. For the particular configuration optimized for 20
MHz, Figure 2 shows the normalized beam pattern at 20 MHz as a function
of θ and φ, where θ and φ are the azimuth and zenith angles, respectively.
This is a 3D plot of the surface defined by B(θ, φ) as given in Equation 13.
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Figure 2: Normalized Beam Pattern at 20 MHz for an array optimized at
20 MHz (i.e. an inner radius of 4.42 m). The color pattern represents the
sensitivity, with red being the highest sensitivity and blue being the weakest.

For the purpose of rejecting local RFI, a configuration with the lowest possi-
ble H/Ω0 was selected. In order to determine this for a particular frequency
(i.e. 20 MHz), values for the horizon rejection of the double ring configura-
tion were plotted against a range of radii, from 3 to 83 meters, to determine
the ideal inner radius (See Figure 3 for page 13).
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Figure 3: H/Ω0 was evaluated over a range of radii at a fixed frequency of
20 MHz in order to determine the ideal radius for this frequency. As can be
seen in the above figure, the minimum of H/Ω0 occurs at a radius of 4.42
m.

At 20 MHz, H/Ω0 is minimized at 4.42 m. The values of the inner radii for
frequencies between 5 to 30 MHz can be found in Table 4.1 on page 16.

Figure 4: Frequency vs Horizon Rejection: This shows the values of H/Ω0

for the Double Ring Configuration optimized for 20 MHz. The frequency
runs from 3-83 MHz with 300 bins. The magnitude of the highest horizon
rejection for 20 MHz, is - 39.5 dB
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3.2 Validation of the Double Ring Configuration

To eliminate the possibility that a configuration different than that of the
double ring close-packed configuration might have a higher horizon rejection,
a Monte-Carlo style analysis was done to test random array configurations.
Random configurations of 12 antennas were generated and H/Ω0 was calcu-
lated for each one at a fixed frequency of 20 MHz. Figure 5 below shows the
histogram of the H/Ω0 values for 750,000 trial arrays. The smallest value
of H/Ω0 generated was -8.46 dB, which was much higher than -39.5 dB, the
local minimum found with the double ring configuration.

A second test of the double ring configuration was done by looking at small
perturbations, no more than a tenth of the wavelength in magnitude, around
the existing positions of the antenna stands. This helps determine whether
or not the original placement of the double ring configuration is actually
optimized for a given frequency. This test was devised because it was de-
termined that it would take roughly 1026 different random configurations to
get an array that would create a local minimum for H/Ω0. This method is
a more efficient test of the double ring configuration than the Monte-Carlo
test.

Figure 5: Minimized values of H/Ω0: This shows the lowest values of H/Ω0

generated for 750,000 random arrays. The smallest value of H/Ω0 generated
was -8.46 dB.
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Horizon Rejection (dBs)

-36.5 -35.5 -34.5 -33.5 -32.5 -31.5 -30.5

Figure 6: This histogram displays the minimized values of H/Ω0 generated
for the skewed double ring configurations. There were a total of 1000 differ-
ent iterations and the lowest value was -36.4 dBs.

1000 different perturbations in the double ring configuration were tested
(See figure 6 on page 15). The lowest value of H/Ω0 was found to be -36.4
dBs which is still higher than the local minimum obtained with the double
ring configuration. This is strong evidence that the double ring arrangement
minimizes H/Ω0 for a set of 12 antennas, with a higher horizon rejection
than other configurations.

4 Conclusion

4.1 What’s been accomplished

We calculated the sensitivity and horizon rejection of the array in the double
ring configuration optimized for specific frequencies between 5and30 MHz.
(See Table 4.1). The radii for each target frequency was also determined.
The final tests of the double ring configuration established it as an opti-
mal configuration for observing radio transients. The Monte-Carlo analysis
found the smallest value of H/Ω0 to be -8.46 dB, a much lower level of
horizon rejection than the -39.5 dB of the double ring configuration. 1000
different skewed double ring configurations were tested and the lowest value
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of H/Ω0 was found to be -36.4 dBs, a higher value than the local minimum
of the original double ring configuration.

Frequency (MHz) 5 10 15 20 25 30

Radius (m) 17.4 8.79 6.04 4.42 3.51 3.01

Volume (×1029) 1.26 2.21 2.99 3.82 4.17 5.37

H/Ω0 (dB) -33.8 -36.8 -36.7 -39.5 -37.2 -37.6

Min Flux (×10−20 Jy) 5.63 3.77 2.92 2.38 1.98 1.67

4.2 Future Questions

This project did not address the potential issue of mutual coupling. There
are two different software packages that could be used in the future to test
mutual coupling, NEC3 and Comsol. Both of these can model the properties
of the array, as well as each individual antenna stand. It has been suggested
that the effects of mutual coupling can be small (S.W. Ellingson, private
communications).

In order to truly optimize the double ring configuration longer simulations
of both random array tests need to be run. A run of 1 million arrays for
each test would give a more accurate picture of the results.
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function [R] = a r r a y d i s t ( num i , num o , r i , r o , o f f s e t )

%Generates the inner and outer c i r c l e s o f the array
%num i i s the number o f antennas in the inner ring , num o i s the num of
%antennas in the outer ring , r i i s the inner radius , r o i s the outer
%radius , and o f f s e t i s the ang l e o f r o t a t i on o f the outer r ing to the inner
%r ing

%The ang le between each component
a n g l e i = 2∗pi / num i ;
ang l e o = 2∗pi / num o ;

%The x , y l o c a t i o n s o f each component o f the inner c i r c l e
x i = zeros (1 , num i ) ;
y i = zeros (1 , num i ) ;
z i = zeros (1 , num i ) ;

for j = 1 : num i
x i (1 , j ) = r i ∗cos ( a n g l e i + ( j −1)∗ a n g l e i ) ;
y i (1 , j ) = r i ∗ sin ( a n g l e i + ( j −1)∗ a n g l e i ) ;

end

%The x , y l o c a t i o n s o f each component o f the outer c i r c l e
x o = zeros (1 , num o ) ;
y o = zeros (1 , num o ) ;
z o = zeros (1 , num o ) ;

for l = 1 : num o
x o (1 , l ) = r o ∗cos ( ang l e o + ( l −1)∗ ang l e o + o f f s e t ) ;
y o (1 , l ) = r o ∗ sin ( ang l e o + ( l −1)∗ ang l e o + o f f s e t ) ;

end

%The array wi th a l l the l o c a t i o n s o f the antennas
R = [ x i x o ; y i y o ; z i z o ; ] ’ ;

%R i = [ x i ; y i ; z i ] ’ ;
%R o = [ x o ; y o ; z o ] ’ ;

%p l o t ( x i , y i , ’ b ˆ ’ , x o , y o , ’ k ˆ ’ ) ;

end
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