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Abstract

The Galactic population of close white dwarf binaries is expected to
provide the largest number of gravitational wave sources for low frequency
detectors such as the Laser Interferometer Space Antenna (LISA). We model
the current population of close white dwarf binaries in the Galaxy using the
population synthesis tool StarTrack and observe with a simulated LISA for a
period of two years. From the two-year observation, an appreciable fraction
of the 104 binaries detected will be progenitors of Type Ia supernovae. We
report on the properties of the detected binaries and conclude that if LISA
were to be launched it would expand our knowledge about the Galaxy and
about Type Ia supernovae.
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1 Introduction

1.1 The Type Ia Supernova

The 2011 Nobel Prize in Physics was awarded to Saul Perlmutter, Brain P.
Schmidt, and Adam G. Riess for showing the accelerating expansion of the
Universe through observations of Type Ia Supernovae (SNe Ia) in distant
galaxies. They measured the SNe Ia light curves, assumed the explosion
mechanism was the same for each supernova, and compared the expected
redshift light intensity to the observed light intensity. This led them to con-
clude that the Universe was not only expanding but accelerating [1]. Despite
the great importance of SNe Ia, neither the nature of the explosion nor the
progenitors of such physical events are well understood. Two main compet-
ing progenitor scenarios have been proposed. We briefly discuss the single
degenerate (SD) scenario in the next section but only consider the double
degenerate (DD) scenario as progenitors of SNe Ia, where the explosion is
caused by the merging of two carbon-oxygen white dwarfs, with a combined
mass exceding the Chandrasekhar limit, that spiral in due to the emission
of gravitational waves [2].

1.2 The Single Degenerate Scenario

The single degenerate (SD) scenario refers to the case where a carbon-oxygen
white dwarf (WD) accretes matter from a non-degenerate companion (either
a red giant or sub-giant) that has overfilled it Roche lobe. The WD grows
in mass until it reaches the Chandrasekhar mass limit, it then implodes be-
cause it is unable sustain itself against the tremendous pressure of gravity.
As a result, the core heats up and the CO begins to fuse. The amount of en-
ergy released by the fusion of CO is such that the WD explodes, producing
a SNe Ia, leaving no remnant behind. One drawback of this scenario is that
population synthesis calculations that assume the SD scenario as progeni-
tors of SNe Ia do not agree with observations; specifically the SD rate is an
order of magnitude lower than the observed SN Ia rate [3]. More recently
observational evidence against the SD scenario has been provided [4]. In
the SD scenario, the white dwarf is destroyed during the explosion but the
companion remains behind. Edwards, Pagnotta, and Schaefer searched for
the companion of the SN Ia that created SNR 0519-69.0 in the large magel-
lanic cloud and concluded that either the progenitor of the SN Ia was either
formed by a supersoft source or a double-degenerate since all of the stars
nearby where the explosion occurred were main sequence stars.
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1.3 On Double White Dwarfs

In 1984 Webbink, seeing that models of the birth rates of Type Ia super-
novae by evolution of double white dwarfs agreed with observational esti-
mates, proposed that SNe Ia progenitors may be close double white dwarfs
(CDWD). From population synthesis models it is estimated that there ex-
ist on the order of 3.0 × 107 or so binary systems consisting of CDWD
that emit gravitational waves (GW) in the 10-100 mHz range [5]. Most
of them lie in the low frequency range (0.1-3.0 mHz) producing a noise
that makes detection of CDWD unlikely at this frequencies. The forma-
tion of CDWD arises in systems in which the constituents’ zero-age main
sequence (ZAMS) masses range from 1-9 M� and have initial separations
between 10-1000 R� [6]; the end products fall mainly into three groups:
helium/helium, helium/carbon-oxygen, and carbon-oxygen/carbon-oxygen
white dwarfs. Due to the emission of gravitational waves, the orbit of the
binaries shrinks and ultimately the white dwarfs merge binaries composed
of two carbon-oxygen white dwarfs with a total mass exceeding the Chan-
drasekhar mass are destined to become a SN Ia.

1.4 Formation of CO/CO Pairs

According to Evans [6], if a binary system consists of intermediate-mass
components ( i.e. its components ZAMS is in the range of 5-9 M�) and has
an initial separation of order 70-500 R�, then the more massive (primary)
star will fill its Roche lobe after it finishes burning the hydrogen in its core,
but before igniting helium. That is because a heavier star will fuse hydrogen
in their core at a higher rate than the less massive star. Consequently,
the primary star will finish burning the hydrogen in its core before its less
massive companion. Since the core is not hot enough to fuse helium, it is left
without an outward pressure to counteract the pressure of gravity, thus it
collapses. The temperature of the core rises, causing the outer layers of gas
that surround the star to expand and fill its Roche lobe. During this stage
the mass transfer proceeds with small losses of mass and angular momentum
[2]. If the mass transfer is extremely rapid, then the accretor will not be
able to accrete all the mass. Assuming that angular momentum and energy
are conserved, it follows that the separation between the binaries shrinks.
As a consequence, the donor will overflow its Roche lobe more which will
accelerate mass transfer and more rapidly decrease the separation of the
stars. The lost mass that cannot be accreted by the secondary increases its
volume causing it to fill the Roche lobe of the secondary; this is known as
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the common envelope stage. At this stage both stars have overfilled their
Roche lobes and are surrounded by the mass lost by the primary star. The
mass of the primary is in the range of 0.7 - 1 M�, which means that common
envelope contains most of it, about 4-6 M�.

As the stars go around their orbits they will experience a drag force
exerted by the gas that envelopes them. Therefore, the kinetic energy of
each star transfers to the surrounding envelope. Consequently, as the gas
heats up the orbits decrease. The hotter gas is less tightly bound to the
binary systems and eventually it will become hot enough that it will be
completely removed. The energy required to lift off the envelope will shrink
the orbit of the helium core and the companion within 10 - 70 R� [6] .
Once the helium core is hot enough, helium burning will commence and will
convert the primary remnant to a degenerate CO dwarf with a mass of 0.7 -
1.0M� in about 105yr. When the secondary overfills its Roche lobe, a second
common envelope may be formed. The evolution of the common envelope
proceeds in a similar manner, which reduces the separation to about 0.2 -
1.4 R�; helium burning converts the secondary into a CO dwarf.

1.5 Population Synthesis

We populate the Galaxy with WD binaries using the population synthesis
tool StarTrack, written by K. Belczynski [7]. His code describes single stellar
evolution and the physical interactions of two stars in a binary and further
evolves compact stellar remnants formed such as, WD, neutron stars, and
black holes. Since we lack knowledge of the physics behind many astrophys-
ical processes, population synthesis may depend on ∼30 parameters which
some consider to be a major weakness. One of it strengths is that it allows
us to approach problems where we lack the full physical picture. Predictions
made by population synthesis are then compared to observations that either
support or rule out models that attempt to describe physical phenomena,
delivering valuable insights.

1.6 Gravitational Waves

Gravitational waves are ripples in space-time predicted by Albert Einstein
in 1916. Proof of their existence has been indirectly shown by a close binary
system of pulsars (B1913+16). Weisberg & Taylor [8] showed that the rate
of change of the orbital period of B1913+16 agrees with the expected change
cause by the emission of gravitational waves within 0.2 %.
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1.7 LISA

The Laser Interferometer Space Antenna (LISA) is an effort by the European
Space Agency to measure gravitational waves. It will operate by measuring
the distance traveled by identical light beams along two adjoining arms of
the three spacecraft separated by 5 million kilometers, flying along Earth’s
orbit around the sun. If a gravitational wave is present it will contract or
enlarge the path traveled by the light and by doing so produce a phase
difference between the light beams.

2 The LISA Simulation

2.1 General Descripition

The LISA mission is composed of three spacecraft, which will be placed at
vertices of an equilateral triangle, that will orbit the sun. The center of
mass of the triangle formed by the spacecraft follows a circular orbit at 1
AU, with an orbital period of one year. Apart from orbiting the sun, the
triangular formation rotates about its center of mass in a clockwise direction
as viewed from the sun. The arm lengths are approximately 5 million km.
The goal of the mission is to detect gravitational waves by measuring the
difference in the roundtrip distance traveled between two laser beams that
fly along adjacent arms of LISA. When a GW passes through the detector
it is theorized that it will contract and expand the distance traveled by the
laser beams causing a phase difference between them relative to the reference
beam. It is this phase difference that LISA will measure. Placing LISA in
space does not free it from noise; random forces would produce vibrations on
the spacecrafts and the fact that LISA is a 5 million km interferometer means
that a small number of photons will be reaching the detector introducing
variations in the beam intensity, known as shot noise. Furthermore, the
large number of white dwarf binaries in the Galaxy will produce a GW
background known as confusion noise; most of them lie in the frequency
range of 0.1 - 3.0 mHz, which makes it a more difficult task to resolve GW
sources at these frequencies.

2.2 Gravitational Wave Produced by A Binary System

Let us consider a plane polarized GW produced by a binary. To do so we
will consider a coordinate system where the binary system lies in the X ′−Y ′
plane and the angular momentum of the binary points in the L̂ direction.
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The angle the Z ′ axis makes with L̂ is θ′. This signal is more easily described
with the use of the transverse-traceless gauge

hαβ =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


where [5]

h+ =
G5/3

c4d
M5/3
c f2/3(1 + cos2 i) (1)

h× = −2
G5/3

c4d
M5/3
c f2/3 cos2 i, (2)

where d is the distance to the binary, i is the inclination angle, and Mc is
known as the chirp mass and is defined as

Mc =
(M1M2)

3/5

(M1 +M2)1/5
. (3)

2.3 Gravitational Wave Strain On LISA Produced by A Bi-
nary System

In the absence of a GW, the distance between two points is described by
the flat-space metric

ηαβ =


−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


The presence of a GW will perturb the flat-space metric producing the new
metric

gαβ = ηαβ + hαβ (4)

where hαβ is the strain produced by a GW. We use a barycentric coordinate
system, where the sun lies in the origin, the X-axis points toward the center
of mass of LISA, the Y -axis in the direction perpendicular to X-axis, and the
Z-axis is defined by the direction of the ecliptic pole to measure the distance
between two spacecrafts in the presence of a GW. Using the transverse-
traceless gauge to describe a plane gravitational wave propagating in the n̂
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Figure 1: Schematic description of LISA
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direction we consider the strain caused in one of LISA’s arms. The length
L is

L =

∫ L0

0

√
ds2. (5)

Next we consider the infinitesimal distance to be ds2 = gαβdx
αdxβ and let

xα = x(λ) which yields

dxα =
∂xα

∂λ
dλ. (6)

Substituting this result into 9 gives us

L =

∫ L0

0

√
ηαβ

∂xα

∂λ

∂xβ

∂λ
d2λ+ hαβ

∂xα

∂λ

∂xβ

∂λ
d2λ (7)

L ≈
∫ L0

0

√
ηαβ

∂xα

∂λ

∂xβ

∂λ

(
1 +

1

2

hεζ
∂xε

∂λ
∂xζ

∂λ

δγκ
∂xγ

∂λ
∂xκ

∂λ

)
dλ, (8)

the perturbation hαβ is taken to small which allows us to make a first order
approximation. To evaluate integral we introduce the following substitutions
[9]:

xα = λ`α (9)

1 = `α`βηαβ (10)

where `α and `β are units vectors that point along the arms of LISA. With
this substitution the integral simply becomes

L ≈
∫ L0

0

(
1 +

1

2
hεζ`

ε`ζ
)
dλ. (11)

Since the wavelength of the GW is much longer than the arm length of LISA,
hεζ remains constant along the path. The integral then becomes

L ≈
∫ L0

0

(
1 +

1

2
hεζ`

ε`ζ
)
dλ = L0

(
1 +

1

2
hεζ`

ε`ζ
)
, (12)

where L0 is the arm length of the interferometer. We define the relative
difference between two adjacent arms to be

h(t) =
1

2
hαβ(l̂1

α
l̂1
β − l̂2

α
l̂2
β
). (13)

The response of a noise free detector to a GW source will be S(t) = h(t),
where h(t) is the strain a GW would produce.
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2.4 Acceleration Noise, Shot Noise, Position Noise, and Con-
fusion Noise

Two major noise contributions in the instrument are due to stochastic pro-
cesses, these are known as acceleration noise and shot noise. The acceler-
ation noise is the product of the random forces that the test masses ex-
perienced in their roundtrip orbit around the sun. The shot noise is the
effect of the low number of photons reaching the the detectors at random
times. Thus we model the acceleration noise and the shot noise on each
spacecraft by drawing values randomly from independent Gaussian distri-
butions on the frequency domain, multiplying it by the one sided spectral
density, either by Ss(f)1/2 = 20 × 10−12 mHz−1/2 (for the shot noise) or
Sa(f)1/2 = 3 × 10−15[1 + (10−4 Hz/f)2]1/2 ms−2 Hz−1/2 (for the acceler-
ation noise), and fast Fourier transform (FFT) into the time domain [10].
Because we do not know where exactly the spacecraft will be located at any
given point in time another type of noise is introduced into LISA, denoted
as position noise. We generate the position noise from the acceleration noise
by integrating it twice in the Fourier domain which introduces a factor of
(iω)−2 and inverse Fourier transform it to the time domain. Finally, the the
power spectral density of the confusion noise produced by the white dwarf
binaries is [11].

n(f) =



1.65× 10−39( f
1.0×10−4 )0.2099 : f ∈ (1.0× 10−4Hz, 2.5× 10−4Hz]

2.0× 10−39( f
2.5×10−4 )−0.4894 : f ∈ (2.5× 10−4Hz, 4.5× 10−4Hz]

1.5× 10−39( f
4.5×10−4 )−0.9545 : f ∈ (4.5× 10−4Hz, 1.0× 10−3Hz]

7.0× 10−40( f
1.0×10−3 )−1.7095 : f ∈ (1.0× 10−3Hz, 1.5× 10−3Hz]

3.5× 10−40( f
1.5×10−3 )−2.9453 : f ∈ (1.4× 10−3Hz, 2.0× 10−3Hz]

1.5× 10−40( f
2.0×10−3 )−5.1290 : f ∈ (2.0× 10−3Hz, 2.2× 10−3Hz]

9.2× 10−41( f
2.2×10−3 )−18.1819 : f ∈ (2.2× 10−3Hz, 2.3× 10−3Hz]

4.1× 10−41( f
2.3×10−3 )−18.0531 : f ∈ (2.3× 10−3Hz, 2.5× 10−3Hz]

9.1× 10−42( f
2.5×10−3 )−15.391 : f > 2.5× 10−3Hz
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At the end the signal detected by LISA is

S = Sa + Sp + Ss + nb + h(t), (14)

where Sa is the signal produced by the acceleration noise, Ss is the signal
produced by the shot noise, Sp is the signal produced by the position noise,
nb is the signal produced by the confusion noise, and h(t) is the gravitational
wave strain on LISA.

3 Data Analysis

3.1 Overview

We compute the LISA response to the entire population over a two-year
observation time. In order to reduce computational time, in searching for
all the 30 million binaries in the data stream recorded by LISA, we compute
the signal to noise ratio for all 30 million binaries (explained in the following
section) and select only those double white dwarf binaries with a signal to
noise ratio (ρ) greater or equal to five. Binaries that pass the threshold
test are then run through the data analysis pipeline described in the Match
section.

3.2 SNR

The signal-to-noise ratio is defined as

ρ2 = 4

∫ ∞
0

∣∣∣h̃(f)
∣∣∣2

Sn(f)
df (15)

where Sn(f) is the one sided spectral density of the noise in LISA and h̃(f)
is the Fourier transform of the signal produce by a binary.

Next, we take advantage of the nature of a gravitational wave produced
by a white dwarf binary. Most of the power in the gravitational wave will
be distributed at a specific frequency f0 which can be more explicitly stated
as

h̃(f) = Aδ(f − f0). (16)

We substitute this form of h̃(f) into the definition of the signal-to-noise ratio
to obtain

ρ2 = 4

∫ ∞
0

A2δ(f − f0)
Sn(f)

df. (17)

9



As a result, the δ(f − f0) in the integrand evaluates the integral to be

ρ2 =
4A2

Sn(f0)
, (18)

where A is the amplitude of the GW produce by a binary given by [12]

A =
2(GMc)

5
3

c4d

(
π

PGW

)2/3

. (19)

In equation (19), G is Newton’s gravitational constant, d is the distance to
the binary, Mc is the chirp mass, and PGW is the period of the gravitational
wave. For binaries with circular orbits the gravitational wave period PGW
and the orbital period of the binary Porb are simply related by a factor of 2.
That is

Porb(t) = 2PGW(t) (20)

and

Porb(t) =

(
P

8/3
0 − 8

3
kt

)3/8

, (21)

where P0 is the orbital period at t = 0 and k is a constant given by

k ≡ 96

5c5
(2π)8/3(GMc)

5/3. (22)

3.3 Match

Binaries that pass the signal-to-noise ratio threshold are searched for in the
data stream—but not blindly. We define χ2 to be

χ2 =
1

N

N∑
i

(Di −Mi)
2

σ2N
(23)

where Di is the data stream recorded by LISA, Mi is our model (in this case
the waveform computed using the 8 known parameters of the binary), and
σN is the standard deviation of the noise. To see how χ2 works, let

Di = Si + ni (24)

where Si is the actual signal from a binary and ni is simply random noise.
Making this substitution into the definition of χ2 and expanding the numer-
ator we obtain

χ2 =
1

N

N∑
i

S2
i + n2i + 2Sini − 2SiMi − 2niMi +M2

i

σ2N
. (25)
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Since the noise is random the terms multiplied by ni will average out to zero
leaving us with

χ2 =
1

N

N∑
i

(Si −Mi)
2 + n2i

σ2N
. (26)

The result shows that if our model is the exact signal of the binary, that is

Mi = Si, (27)

then

χ2 =
1

N

N∑
i

n2i
σ2N

= 1. (28)

Thus values of χ2 close to one imply that the model Mi is likely to be
contained in the data stream, and values of χ2 greater than one correspond
to models Mi that are less likely to be contain in the data stream. Remember
that Mi is characterized by 8 different parameters which makes χ2 a function
of 8 parameters. Thus if we want to obtain a good model or fit, χ2 must be
minimize in an eight parameter space. The algorithm we use to optimize χ2

is known as the Nelder-Mead method [13]. The Nelder-Mead method is a
simplex (a generalization of a triangle in n dimensions) method for finding
a local minimum of a function. Let P0, ...., Pn be the vertices of the simplex
formed in the n dimensional space and denote the values of χ2 at a given
point Pi as χi. We then define

χ2
h = max(χ2

i ) (29)

χ2
l = min(χ2

i ). (30)

The subscript h indicates the highest value of the set {χ2
i } and l the lowest

value of the set {χ2
i }. We further define the centroid of the simplex as

P̄ =
n∑
i 6=h

Pi
n

(31)

and write the distance between any two given points as [PiPj ]. The worst
vertex (where χ2 is the greatest) is rejected and replaced with a new vertex
using the following operations: reflection, contraction, and expansion. At
each step, a new simplex is formed and χ2 is evaluated at each vertex; the
replacement of the worst vertex continues until the parameters that optimize
χ2 are found. Once the worst vertex is found it is reflected as follows

P∗ = (1 + α)P̄ − αPh, (32)
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where α is a positive constant known as the reflection coefficient. Whenever
χ2
∗ is between [yl, yh], we replace Ph by P∗ and restart again with the newly

formed simplex. In the case that χ2
∗ < χ2

l , it appears that a step into right
direction of the minimum has been taken. It only seems natural to stretch
further into this same direction therefore we expand by forming a new vertex
at

P∗∗ = γP∗ + (1− γ)P̄ . (33)

Gamma is known as the expansion coefficient and is defined as the ratio
between [P ∗∗P̄ ] to [P ∗P̄ ]. Consequently, gamma is greater than one. With
the condition that the new expanded vertex gives the result of χ2∗∗ < χ2

l ,
Ph is replaced by P ∗∗. But if χ2∗∗ > χ2

l , a step away from the minimum has
been taken thus we disregard this expanded vertex and replaced Ph with P∗
and restart the process again. In the case that by replacing Ph by P∗ leaves
χ2
∗ > χ2

i for all i 6= h, that is if we replace the worst vertex with another
worst vertex, we define a new Ph (the vertex Ph or P∗ that yields the lowest
value of χ2) and form

P∗∗ = βPh + (1− β)P̄ . (34)

β is known as the contraction coefficient, lies between 0 and 1, and is defined
as the ratio of [P ∗∗P̄ ] and [PP̄ ]. Provided that χ2

∗∗ < min(χ2
h, χ

2
∗), P∗∗ is

accepted for Ph, otherwise all the vertices are replaced by

P ′i =
Pi + Pl

2
. (35)

The replacement of the worst vertex is halted when the standard deviation
of {χ2

i } falls below a threshold value. The standard deviation we define as

σ =

√√√√ N∑
i=0

(χ2
i − χ̄2)2

N
(36)

where N is the number of dimensions. The parameters obtained by the use
of the Nelder-Mead method we denote as the recovered parameters. In order
to claim that we have detected a binary we make use of cross-correlation
(cc), which is a measure of the similarity of two different waveforms. It is
defined for two continuous functions f and g as

(f ? g)(t) ≡
∫ ∞
−∞

f∗(τ)g(t+ τ)dτ, (37)

where f∗ is the complex conjugate of f . In order to make this integral
evaluate to a number between −1 and 1, a normalization coefficient must
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be introduced. To grasp a better understanding of the cc, let both f and
g be equal to cos(τ). Thus we will be integrating cos2(τ) over integral
number of periods. This will yield a cc of 1, which means that the functions
are identical. So we compute the cc between the recovered waveforms and
actual waveforms, and if the cc > 0.9 we claim that we have detected a
binary.

4 Results

We model the population of close double white dwarfs (CDWDs) for the
bulge and the disk of the Galaxy using the StarTrack population synthesis
code of Belczynski [7]. It assumes a constant star formation rate over the
past 10 Gyr for the disk and a constant star formation over the first Gyr
for the bulge. This produces a population of 27,835,248 CDWDs within the
LISA sensitivity band from which 1.45% are potential SN Ia progenitors
(405,039). Since most the binaries in this population will be undetectable
we restrict our analysis to binaries that have a signal-to-noise ratio that is
greater or equal to five. This condition brings the population of CDWD to
39,648 binaries which is 0.14% of the total population and the population
of SN Ia progenitors to 653 which 0.16% of the SN Ia progenitors popula-
tion. This means that 1.64% of the population we will search in the data
recorded by LISA will be potential SN Ia progenitors. We run this subset
of binaries through the data analysis algorithm (described in the previous
section) which is able to resolve 31,169 binaries from the 39,648 binaries
that were searched for. Of the 653 potential SN Ia progenitors 503 were
resolved, which is 77% of the potential progenitors searched. All of this is
summarized in Table 1. Something to note is that the detected number of
binaries by LISA is 31,169 and the known number of white dwarf binaries
is approximately 1-100. From this we then can conclude that LISA will
uncover this hidden population and provide a large enough population of
binaries that will allow us to study binary evolution in detail. Furthermore,
the current known population SN Ia progenitors is zero. Our result show
that LISA will effectively identify such progenitors systems providing once
again a population to study the evolution of systems that will produce the
essential SN Ia.

4.1 Complete View of the Galaxy

From the resolved binaries we are able to find three important results. First,
they show that LISA will be able see through the Galaxy (see figure 2 & 3)
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Table 1: The Populations

population # CDWD # SN Ia

All 27,835,248 405,039

SNR > 5 39,648 653

Resolved 31,169 503

Figure 2: Histograms of distances to the double white dwarfs. The under-
lying population is in black, the systems with a signal-to-noise ratio greater
than 5 are in red, and the resolved systems are shown in green. The center
of the Galaxy can be seen at 8.5 Kpc
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thus providing for the first time a complete map of the CDWD in the Galaxy.
This can be seen in figure 2 which gives histograms of the distances to the
binaries. The black histogram shows the underlying population of either
the total CDWD binaries (top) or SN Ia progenitors (bottom). The red
histogram corresponds to binaries (top) or SN Ia progenitors (bottom) with
a signal-to-noise greater or equal to five. The green histogram corresponds
to resolved systems. If we examine the top histograms (CDWD) and the
bottom histograms (SN Ia progenitors), we can see that even though CDWD
concentrate the most in the bulge there are less progenitors of SN Ia in this
region. This can be explained by the fact that most stars in the bulge are old
hence most progenitors in this region have had enough time to merge. Ex-
amination of the resolved system histogram demonstrates that LISA will be
able to observe binaries to distances up to 30 kpc. To show how completely
and uniformly LISA will see through the Galaxy we plot it the position of
the resolved systems shown in figure 3 (viewed from above the Galaxy).
The black points represent the resolved binaries by LISA and the red points
stand for potential SN Ia progenitors. The approximate position of the sun
is shown in cyan.

4.2 No Appreciable Bias On The Detected Population

The second important result that we obtain is that the resolved population
is similar to the overall population. That is the detected sample resembles
the true sample. This means that LISA will be able to sample evenly, no
matter what the actual population of white dwarf is, through the entire
population of CDWD. To see this more concretely , figure 4 shows a scatter
plot of masses of the binaries. In it you can see the complete population in
black, the detected population in red, and the detected SN Ia progenitors
in red.

4.3 Visibility of All Binaries With f > 3 mHz

The most striking result is that nearly all the binaries we search for with
a fGW > 0.003 Hz were detected by LISA. Figure 5 shows three stacked
histograms of the number of binaries per frequency. In each plot the overall
population is represented by the black histogram while SN Ia progenitors
are shown on red. The histograms in the top of figure 5 are histograms
of the whole population, the histograms in the middle are histograms of
binaries with and signal-to-noise ratio greater or equal to five, and the bot-
tom histograms are histograms of the detected binaries by LISA. If you
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Figure 3: The spatial distribution of the resolved binaries viewed from above
the Galaxy. The resolved binaries are shown in black while the potential
SNe Ia progenitors are shown in red. The sun is shown in cyan.
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Figure 4: Plot of the masses of the binaries. The total population is shown in
black, the detected population in green, and the detected SN Ia progenitors
in red.
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compare the detected population histograms (BOTTOM) with the total
population (TOP) histograms you will observe that they look identical at
fGW > 0.003 Hz. Such results allows to conclude that LISA will observe the
entire population of CDWD binaries with a fGW > 0.003 Hz.

Figure 5: Number in frequency space for the underlying population of double
white dwarfs (top panel), for systems with a signal-to-noise ratio greater
than 5 (middle panel), and for resolved systems (bottom panel).

5 Conclusions

We have found that LISA will be able to resolve less than 0.1% of the
Galactic DWDs within its sensitivity band of f ≥ 0.1 mHz. In the underlying
population of our synthetic Galaxy, 1.4% of these DWDs are potential SNe
Ia progenitors. The resolved population consists of nearly every binary
with a gravitational wave frequency above 3 mHz, and that this population
is observable throughout the Galaxy. Type Ia progenitors makeup about
1.4% of the resolved systems, and so there are no appreciable biases in
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this population. Thus, LISA can be considered to be an effective tool for
identifying the Galactic population of DWDs and the SNe Ia progenitors
within it.
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