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Prelinguistic babbling is a critical phase in infant language development and
is best understood in temperate songbirds where it occurs primarily in males
at reproductive maturity and is modulated by sex steroids. Parrots of both
sexes are icons of tropical vocal plasticity, but vocal babbling is unreported
in this group and whether the endocrine system is involved is unknown.
Here we show that vocal babbling is widespread in a wild parrot population
in Venezuela, ensues in both sexes during the nestling stage, occurs amidst
a captive audience of mixed-aged siblings, and is modulated by corti-
costeroids. Spectrographic analysis and machine learning found phoneme
diversity and combinatorial capacity increased precipitously for the first
week, thereafter, crystalizing into a smaller repertoire, consistent with the
selective attrition model of language development. Corticosterone-treated
nestlings differed from unmanipulated birds and sham controls in several
acoustic properties and crystallized a larger repertoire post-treatment. Our
findings indicate babbling occurs during an early life-history stage in
which corticosteroids help catalyse the transition from a universal learning
programme to one finely tuned for the prevailing ecological environment,
a potentially convergent scenario in human prelinguistic development.
1. Introduction
Vocal babbling occurs at a critical juncture between a genetically based vocal
repertoire and one that depends on the prevailing language environment and
is central to our understanding of the origins of human spoken language
[1–3]. Songbirds have provided important models of how early neuroendocrine
networks prime the brain to coordinate learned, complex vocal communication
[4–6]. The developmental stress hypothesis posits that song functions as an
honest signal of male quality because chronic stress during early development
has deleterious effects on brain structure and learning, thus providing females
with a window into developmental histories of potential mates [7–9]. Most evi-
dence comes from bird species in north temperate latitudes where sexual
selection and migratory behaviour play important roles in life history, social
organization and communication strategies [10,11]. Male and female song
learning in tropical birds has received less study but appears to be more
common compared to temperate counterparts [12]. Parrots are iconic tropical
birds, famous for their vocal imitative abilities in both sexes [13,14]. Despite
widespread availability as pets and for laboratory research, a vocal babbling
stage in development has gone unnoticed in this group and little is known
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about how the endocrine system helps to filter and internalize
environmental information in a way that makes vocal
plasticity adaptive.

There are good reasons to think parrots might differ from
the songbird model of vocal development [13–15]. Although
both songbird and parrot nestlings undergo disproportionate
amounts of brain growth, songbird brains grow more quickly
during the nestling period [16] and undergo a stress hypo-
responsive period (SHRP) as a result of inactivation of the
hypothalamic-pituitary-adrenal axis (HPA) [17]. SHRP buf-
fers rapidly growing brains from deleterious effects of high
corticosteroid levels produced by HPA in response to chronic
stress (e.g. starvation and disease) [18]. Since many songbirds
are open-cup nesters, SHRP can also help reduce movement
and conspicuousness of nestlings to potential predators
until fledging or nutritional independence, when HPA
again becomes reactive and individuals are equipped to
confront challenges on their own [17,19]. By contrast, parrots
are obligate cavity nesters with a nestling environment that
slows and elongates growth and maturation while shielding
nestling activity from visual systems of potential predators,
which may favour an absence of SHRP [20]. Obligate cavity-
nesting limits breeding opportunities and social organization,
and results in female incubation beginning with the first egg
[21,22]. Early incubation results in extreme hatching asyn-
chrony and greatly staggered ages of nest-mates [23], leading
to competitive asymmetries that may also favour early HPA
activation [20,24–26]. Thus, ancestral patterns in cavity versus
open-cup breeding alter patterns in endocrine functionality
in a way that is appropriate to a given life-history stage.

Male songbirds pass through subsong and plastic stages of
song development that are analogous to human infant bab-
bling, with vocal imitation first appearing during the plastic
stage [3,27]. Whereas plastic song in songbirds begins at
sexualmaturation, both sexes of parrots begin imitating contact
calls of parents during the nestling period, well before fledging
and nutritional independence and months before sexual
maturity [28–30]. The parrot nestling period thus encompas-
ses both the sensory (auditory learning) and sensorimotor
(auditory and vocal production learning) stages of vocal
development. It is a life-history stage that emphasizes survival
rather than reproduction and provides a unique opportunity
to understand how the developmental stress hypothesis
generalizes to vocal learning in non-songbirds.

Here we document vocal babbling and report on results of
corticosterone (CORT) supplement experiments on vocal
development in a marked population of wild green-rumped
parrotlets (Forpus passerinus) in Venezuela. From audio-video
recordings inside specially designed nest cavities, we show
that this plastic stage in vocal development is widespread in
both sexes and emerges around the time of first contact call pro-
duction [28–30] and attainment of adult mass and
thermoregulatory ability [31]. Modest, daily CORT sup-
plements were implemented for the first week of babbling to
test for the effects of exogenous CORT on babbling. If CORT
is deleterious to learning, as in songbirds, then CORT-treated
individuals might produce less babbling, have reduced reper-
toire size or postpone or forego the process entirely. If CORT
influences babbling during treatment but not post-treatment,
CORT may have activational or motivational effects, whereas
differences in post-treatment periods would suggest organiz-
ational effects [17,32]. If HPA mediates feedback between the
social environment and vocal learning circuits that support
babbling, CORT-treated individuals might babble more or
have larger repertoires,while controlling for lifehistory, ontogen-
etic and treatment and post-treatment factors. We found vocal
babbling involves a complex suite of life history, ontogenetic
and endocrine factors in both sexes.
2. Material and methods
(a) Study site and population monitoring
All experiments were reviewed and approved by the Institutional
Animal Care and Use Committee (AUP-19-18), University of
Texas Rio Grande Valley and the Ministerio del Poder Popular
para el Ecosocialismo y Aguas in Venezuela (no. 1430). Parrotlets
were studied at Hato Masaguaral (8° 34 N, 67° 35 W), a 7000 ha
ranch and field research station in the State of Guárico, Vene-
zuela during two breeding seasons (2017, 2018). Habitat
consists of tropical savannah, gallery forest and cattle pastures.
The population has been studied, banded, and nesting moni-
tored during the breeding season (June–December) since 1988
[33], made possible in part by 106 artificial nest-boxes distributed
throughout the ranch. Adults were captured in mistnets and
given uniquely coloured leg-band combinations. Nest-boxes
were checked for contents every 3 days during the breeding
season to determine egg-laying, hatching and fledging dates.
Monogamous pairs at each nest were identified by unique
colour leg band combinations. Eggs and nestlings were uniquely
marked with non-toxic felt-tip markers and given unique colour
leg band combinations at 25 days post-hatching (dph). Sex of
nestlings was determined by noting discrete differences in
plumage sexual dichromatism, which appear at ca 15 dph [23].

(b) Audio-video recording
Twelve active nests were selected for audio-video (AV) recording
and endocrine manipulations. Brood sizes ranged from 3–8
nestlings. Nest-boxes were rigged with a camcorder (Sony FDR-
AX33 or Canon Vixia HFG20) placed above the nest entrance
providing a clear view of the contents below. AV recording
inside nests began when the female ceased brooding (typically
when the oldest nestling was one to twoweeks old) and continued
daily until the last nestling fledged. Recordings were usually con-
ducted during themorning hours. Recording sessions ranged from
2–4 h. AV was recorded as AVCHD files and saved to SD cards.
Recordings were downloaded each day and duplicate copies
saved to external hard drives.

(c) Audio-video analysis
Nest recordings were analysed using Adobe AUDITION (v. 11, San
Jose, California, USA). Video and audio spectrograms were per-
used, and audio extracted from bouts of babbling by uniquely
marked individuals. Bouts were considered babbling if they con-
sisted of two or more structurally discrete types of vocalization
(contact calls, begging, etc.) given in the absence of any obvious
behavioural context (i.e. during parental absences) and separated
by less than 4 s of silence. Babbling was typically low amplitude
in comparison to begging or contact calls given during parental
interactions.

(d) Spectrographic analysis
Babbling selections were batch exported fromAdobeAUDITION and
saved as WAV files with 16-bit resolution and 44.1 kHz sample
rate. Spectrograms and waveforms of each element (i.e. syllable)
of babbling were measured in RAVEN PRO (v. 1.5, Cornell Labora-
tory of Ornithology, Ithaca, New York, USA). Audio files were
band-pass filtered between 1000 and 15 000 Hz to remove
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extraneous sounds and increase signal-to-noise ratio. Only high-
quality audio (i.e. where vocalizations were not masked by rain,
wind, etc.) of babbling vocalizations was used in spectrographic
analysis. Spectrograms were created with a Hann window and
270 Fast Fourier Transform (FFT). Analysis focused on eight spec-
trographic variables that explained significant individual variation
based on previous work [29]: average entropy (hereafter entropy),
duration (s), centre frequency (Hz), 5% frequency (Hz, hereafter
lower frequency), 95% frequency (Hz, hereafter upper frequency),
interquartile range bandwidth (Hz, hereafter bandwidth), average
slope of the peak frequency contour (Hz s−1, hereafter FM slope)
and number of derivative sign changes in the peak frequency
contour (hereafter inflection points).

(e) Corticosterone supplements
One nestling from each of the 12 nests was selected for hormone
treatment. CORT-treated individuals were dosed with 25 µl
(0.125–0.163 mg ml−1) of CORT-ethanol (ETOH) diluted in
peanut oil 2017 (eight broods). In 2018 (four broods) the volume
and solvent were changed to a 10 µl (0.4075 mg ml−1) dose of
CORT-dimethyl sulfoxide (DMSO) diluted in sesame oil to
reduce potential nutritional effects on nestlings. Corticosterone
crystals (Selleck Chemicals, 99.43% purity) were fully dissolved
in ethanol (Sigma Aldrich, 200 proof) or liquid DMSO (Sigma-
Aldrich, ≥99.9% purity) by vortexing and heating in a water
bath at 65°C. The fully dissolved CORT-ETOH (25 mg ml−1) or
CORT-DMSO (90 mg ml−1) solution was then added to peanut
oil or sesame oil heated to 65°C and mixed by repeated inverting
for final concentrations of 0.125 and 0.163 mg ml−1 CORT-peanut
oil and 0.4075 mg ml−1 CORT-sesame oil. In both years CORT-
treated nestlings received oral treatment twice daily between
20 and 26 dph. This dose meant that each nestling in each year
received a total daily exposure of approximately 8 µg of CORT
per day, during the weeklong treatment period. Previous work
indicated this would amount to the equivalent of endogenous
CORT produced during two additional parental feedings per
day [20]. A control solution was given to sham (hereafter oil)
nestlings at the same dosage as that of the experimental nestlings
(25 µl oil-ETOH or 10 µl oil-DMSO, twice daily for 7 days). Both
CORT-oil mixture and sham treatments were administered by
inserting a 25 µl (2017) or 10 µl (2018) Hamilton syringe directly
into the orofacial cavity. A control nestling was chosen based on
the hatch order of the treatment groups to standardize effects of
the hatching sequence. All nestlings were measured daily during
treatment.

( f ) Statistical analysis
Statistical analysis was conducted in SAS (v. 9.4, SAS Inc., Cary,
North Carolina, USA). Centre, lower, and upper frequency, band-
width, duration and inflection points were log10 transformed to
normalize distributions, whereas average slope and entropy did
not require transformation. Generalized linear mixed models
were used to test for differences in babbling structure based on
treatments and a suite of life-history variables. Treatment (CORT,
oil or control), treatment period (during treatment 20–26 dph or
after treatment 27 dph until fledging, range 29–36 dph), brood
size (small = 3–4 nestlings, medium= 5–6 nestlings or large = 7–8
nestlings), hatch order (early, middle, late), sex (female or male)
and age (dph) were included as fixed effects. Individual brood
(i.e. nest) was included as a random effect to control for repeated
measures of nestlings in the same brood. All eight spectrographic
measurements were modelled as a Gaussian response distribution
linked to an identity function [34]. Models were run for each of the
spectrographic variables and each main factor separately (elec-
tronic supplementary material, table S1). We initially tested 28
models involving different combinations of explanatory factors
and interaction effects. Akaike information criteria (AIC) scores
from each model were used to rank models according to their
AIC weights [35] (electronic supplementary material, table S1).
For each dependent variable, we report the 99% confidence
subset (all models within the model set that contribute to a
cumulative AIC weight of 99%). Complete model sets are
provided in the electronic supplementary material, table S1.
Statistical significance was accepted at α = 0.05.

Repertoire size was estimated with k-means clustering in JMP
(v. 13.0, SAS Inc., Cary, North Carolina, NC). Clustering analysis
was based on principal component scores for eight spectrographic
measurements to determine discrete call types and objectively
quantify repertoire size in each individual and at each stage in
development. Cubic clustering criterion (CCC) was used to deter-
mine the optimal number of clusters for the entire dataset [36].
This analysis indicated k was optimized at 27 clusters (CCC=
4.23, n = 58 957 elements), which was used as a maximal range of
k to seed each analysis within treatment groups and within treat-
ment periods. CCC was used to optimize k in each of the groups
and assign clusters to each call. The log total numberof elements pro-
duced by each individual each day was compared to the log number
of clusters (k) each dayusing a quadratic, tri-cubic smoothing function
(lambda= 0.05) controlling for treatment groups. Matched pairs were
used to determine effects of treatment on the repertoire of each
individual before and after treatment, while controlling for repeated
measures within nests. The complete dataset of measurements,
meta data and associated audio files are provided [37].
3. Results
(a) Babbling in nestling parrotlets
Babbling ensued in parrotlets on average at 21 dph and contin-
ued until fledging (29–36 dph). Babbling was low amplitude
compared to begging and contact calls, nearly void of bodily
movements, and occurred universally in the absence of adult
carers, where siblings were the only obvious audience, albeit
often asleep (electronic supplementary material, Movies
S1,2). In last hatched individuals, babbling occurred without
an obvious audience after all siblings had fledged (electronic
supplementary material, Movie S3). All nestlings of both
sexes babbled extensively (mean female: 1720 ± s.e.m. 460
elements, n = 23 females; male: 1493 ± s.e.m. 357 elements,
n = 13 males; n = 58 957 elements, 36 individuals). Bouts had
similar durations between sexes (mean females: 5.9 ± s.e.m.
0.4 s, n = 1320 bouts; males: 6.2 ± s.e.m. 0.6 s, n = 823 bouts)
and a similar number of elements between sexes (mean
females: 30 ± s.e.m. 2.2 elements per bout, n = 39 555 elements,
1320 bouts; males: 24 ± s.e.m. 2.0 elements per bout, n = 19 402
elements, 823 bouts). Bouts included a medley reminiscent of
nestling begging calls, alarm calls, nestling and adult contact
calls, adult warbling, other examples of the adult repertoire
and some calls without known functional analogues
(figure 1a–f). Calls were usually combined in long strings of
elements and devoid of any obvious behavioural context.
Bouts of babblingwere comprised a repertoire of 27 spectrogra-
phically distinct clusters, as identified by k-means CCC, which
we used as proxies for structurally discrete types of signals
used in bouts of babbling (figures 2 and 3).

(b) Effects of corticosterone treatment
Babbling repertoires in the CORT-treated and control groups
had similar-sized repertoires during the treatment phase
(k = 24–27) (figures 2a–c and 3b), with more ovular clusters
(i.e. less definition). During the post-treatment phase all
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groups had more spherical clusters (i.e. greater definition), but
sham control and unmanipulated groups reduced their reper-
toires (unmanipulated: optimized k= 17, n = 13 225; oil: k= 13,
n = 18 812 elements; figures 2d,e and 3b), while the CORT-
treated group maintained high diversity (optimized k= 25,
n = 15 330 elements; figures 2f and 3). The highest weighted
model predicting repertoire size included treatment, treatment
period and their interaction (table 1). All individuals in the
CORT-treated group increased their repertoire post-treatment
(matched pairs, mean difference = 8, p< 0.001.), while the
other groups tended to decrease repertoire size (mean
differences unmanipulated =−2, p< 0.4561, mean difference
sham-control =−9.5, p < 0.002; table 1). Thus, controls exhibited
an overproduction of signal types during the first week of
babbling, followed by crystallization of a smaller set of signal
types during the post-treatment period. While CORT-treated
birds also exhibited a comparable number of signal types
during the first week of babbling, they crystallized a larger
repertoire during the post-treatment period.

CORT treatment had a pervasive effect on the acoustic
structure of babbling signals. AIC weights indicated that
models including CORT treatment were ranked highest for
seven of eight spectrographic variables (w = 0.82–0.99;
table 2). Treatment, age, and their interaction were top
models in four of the spectrographic variables, while hatching
sequence, brood size and sex were also included in some top
models (table 2). Thus, a combination of exogenous CORT
and life-history factors interacted with different dimensions
of acoustic structure and vocal control, suggesting independent
sources of selection on babbling repertoires.
4. Discussion
Vocal babbling in parrotlets presents a potentially divergent
scenario with subsong and plastic song in closely related song-
birds because it occurred in both sexes and during an early
life-history stage which emphasizes survival instead of repro-
duction and one in which HPA plays an important role in
growth and maturation [17,38]. Whereas, experimentally
induced stress in nestling songbirds often had deleterious
effects on learning programmes [8], in parrotlets, CORT
supplements resulted in a universal increase in repertoires
post-treatment. It suggests CORT produced organizational
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effects on learning in both sexes and implicates HPA in the
filtering and internalization of auditory information. This
differs from the subsong and plastic song stages of male song
development, which occur after the nestling period and
closer to sexual maturation when seasonal rises in gonadal
and non-gonadal sex steroids shape sexual dimorphism in
brain and reproductive behaviour [5,6,32]. Organizational
effects of brain and behaviour are more likely to occur prior
to sexual maturation [32], and our results provide a develop-
mental explanation for why both sexes of parrots are able to
use vocal learning in a variety of contexts as adults.

(a) Ecology of parrot babbling
Parrotlet babbling began, on average, at 21 dph the same age at
which nestlings produce their first signature contact calls
[29,30], which are influenced by contact call templates provided
by adult carers [28]. We found nestling and adult-like contact
calls were common in babbling repertoires (figure 1),
suggesting babbling is probably vulnerable to social influences
of adults. However, unlike contact calls that are used to interact
with adults [28], babblingwas low amplitude, performed in the
absence of adults and in the interim period between parental
feedings (electronic supplementary material, Movies 1–3).
While babbling occurred in lone nestlings, it was observed
more frequently when siblings were the only likely audience,
either intended or unintended. Because babbling repertoires
included nestling-like contact calls and nestling begging calls
(figure 1a–f) and emerged in accordancewith the age hierarchy
(figure 3) [30], sibling influences on contact calls and babbling
repertoires are also possible but will require more research to
uncover. Regardless, parrotlet babbling occurred during an ear-
lier life-history stage compared to most songbirds studied to
date, was universal in both sexes, did not involve unambiguous
vocal exchanges with adults [2,39] and, unlike subsong and
plastic song, included a medley of analogues of the nestling
and adult functional repertoire. An interesting exception was
found in a more basal group of oscine songbirds and one
more closely related to the ancestor of the Psittacopasserae, a
group that includes parrots and songbirds [40].

(b) Effects of corticosterone manipulations on babbling
Cluster analysis revealed that babbling output and repertoires
increased precipitously during their first week and then tended
to crystallize (more spherical clusters) on a fewer number of
call types (lower optimized k) in the remaining days before
fledging (figures 2d,e and 3b). This suggests that our clustering
algorithms succeeded in capturing much of the variation in
repertoires (figure 3a). Thus, nestlings gradually increased
their output and repertoire of call types, followed by a pruning
and refining period. This is consistent with the overproduction
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Table 1. Effects of CORT treatment on vocal babbling repertoire size. (Treatment refers to CORT-treated, sham control and unmanipulated groups; period refers
to period during CORT-treatment versus post-treatment; random refers to an intercept only model.)

model d.f. F p< k AICc ΔAIC w

I 12 390.4 0 1.00

treatment 2,51 3.61 0.034

period 1,51 0.96 0.333

treatment * period 2,51 20.2 0.001

II 7 426.8 36.39 0.00

treatment 2,53 2.26 0.114

period 1,53 0.74 0.392

III 5 430.1 39.75 0.00

treatment 2,54 2.31 0.109

IV 4 437 46.62 0.00

period 1,55 0.79 0.378

V 440.4 50.06 0.00

random

Table 2. Model selection using Akaike information criteria (AIC) for models predicting individual spectrographic attributes. (For each dependent variable, factors
and AIC weights (w) are provided for the 99% confidence set. Entire model sets for each analysis appear in the electronic supplementary material, table S1.
Hatch and brood refer to sequence and size respectively.)

dependent rank model w

avg slope 1 treatment + hatch + treatment × hatch 0.99

duration 1 treatment + hatch + sex 0.82

2 treatment + brood size + treatment × brood 0.18

centre Hz 1 treatment + age + treatment × age 0.99

bandwidth 1 treatment + age + treatment × age 0.99

avg entropy 1 treatment + brood size + treatment × brood 0.99

inflections 1 treatment + sex + treatment × sex 0.99

low Hz 1 treatment + age + treatment × age 0.99

high Hz 1 age 0.82

2 treatment + age 0.18
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and selective attrition model of songbird and mammalian
vocal development [1,2,27,41–43]. However, CORT-treated
birds tended to skip the pruning (higher k), but not the refining
period (more spherical clusters, figure 2f ) during the post-
treatment period. This result is corroborated by the universal
increase in repertoires in the CORT-treated individuals post-
treatment, providing strong evidence that CORT altered
the pruning and crystallization process. In mammals and
birds, juvenile play-like behaviours and the HPA axis are
implicated in a neural pruning process in hierarchically orga-
nized brain regions that prime social-motivational circuits for
the prevailing social environment [44,45]. Play-induced prun-
ing of the repertoire may also be involved in late-developing
brain regions that control babbling because babbling is often
referred to as vocal play [46] and vocal learning engages
social-motivational circuits [4,47,48].

Our supplements involved modest exposure to CORT yet
had important effects on parrotlet babbling. This suggests
that vocal-production learning processes in both sexes of nest-
lings are vulnerable to subtle differences in environmental
challenges during a life-history stage when siblings are an
important aspect of the social and auditory environment [30].
Our findings differed strongly from babbling in most song-
birds, which occurs when individuals have dispersed and
reached sexual maturation and is shaped by gonadal steroids
and interactions with unrelated adults [5,6,32]. It remains to
be seen if gonadal steroids also influence vocal babbling in nest-
ling parrotlets, which show sexual dichromatism in plumage at
15 dph [21]. Nevertheless, in this study parrotlets babbled
months prior to sexual maturation; probably before the hypo-
thalamic-pituitary-gonadal axis was fully functional and
showed a remarkable absence of aggression between siblings,
given the extreme age hierarchy [30]. We found some evidence
of sex differences in how CORT affected acoustic structure
(table 2), which might be caused by gonadal or non-gonadal
sex steroids [11,32]. However, it might also be explained by
sex differences in glucocorticoid receptor distributions rather
than effects of gonadal-steroidal activity [49]. By contrast, nest-
ling parrotlets showed adult-like adrenocortical functionality
as early as 13 dph, which is one week before the onset to bab-
bling [20] (this study), and restraint stress responsiveness
increased in larger broods [20] that have more complex social
environments and greater contact call diversity [30]. Thus, a
lack of SHRP in parrotlets may be adaptive if HPA helps
tailor the learning and pruning process to levels of complexity
in the prevailing social environment. While different from the
songbird model, these results do not undermine the develop-
mental stress hypothesis—to the contrary, parrotlet nestlings
may be more vulnerable to chronic stress owing to an absence
of SHRP. However, it does suggest that benefits of HPA reactiv-
itymust be important enough to outweigh the potential costs of
increases in allostatic load.
5. Conclusion
Our understanding of vocal babbling has been primarily
derived from studies in captivity (songbirds) or in laboratory
(human infants) settings, which often negates following
subtle but constant changes in natural song and language
development, respectively, that may be influenced by the
neuroendocrine feedback with prevailing socioecological
environments. Our study of free-ranging parrots indicated
that babbling: (i) naturally occurs early in development in
both sexes; (ii) is performed with or without an audience,
suggesting an internalized role in cognitive development; (iii)
is composed of a diverse medley of the adult and nestling
repertoire, but not yet integrated into respective functional con-
texts; (iv) is modulated by corticosteroids; and (v) regularly
occurs in the presence of siblings of markedly different age,
size and experience levels. Sibling influences on the plastic
stage in vocal development have received less attention in
songbirds [50], where sibling age hierarchies if they exist,
range from a few hours to a few days. Conversely, parrotlet sib-
ling age hierarchies range up to 17 days [23], creating an early
social environment characterized by a spectrum of competitive
and socio-positive asymmetries that prime the endocrine
system for the prevailing learning environment [20,30] (this
study), a potentially convergent scenario with the sibling
hierarchies’ role in human infant language development [51].
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