Matrix Representation of Differentiation Algorithm with respect to a suitable pair.

Maria del Rosario Valencia Arévalo

Coauthor: Harrinson Andres Arrubla Ramirez

University of Texas Rio Grande Valley and Universidad Nacional de Colombia
mariadelrosario.valenciaarevalo01@utrgv.edu and harrinson.arrubla01@utrgv.edu

Abstract

The representation of partially ordered sets (posets) over an arbitrary field were introduced by Nazarova and Roiter, together with a differentiation algorithm to classify the posets representations of width less than or equal to 3 . These representations are presented in matrices, transforming a partially ordered sets representation problem into a matrix problem. In this research we present in detail the matrix version of the differentiation algorithm with respect to suitable pair of points.

Differentiation with respect to suitable pair

A pair (a, b) is suitable if $\mathscr{P}=a \nabla+b_{\Delta}+C$, with $C=\left\{c_{1}<\cdots<c_{n}\right\}$ a (possibly empty) chain. For such a pair, we let

$$
\mathscr{P}_{(a, b)}^{\prime}=\left(\left(a^{\nabla}+b_{\Delta}\right) \backslash C\right) \cup C^{+} \cup C^{-} .
$$

We have a differentiation functor

$$
()_{(a, b)}^{\prime}: \operatorname{rep}(\mathscr{P}, k) \rightarrow \operatorname{rep}\left(\mathscr{P}_{(a, b)}^{\prime}, k\right)
$$

which assigns to each object $U=\left(U_{0} ; U_{x} \mid x \in\right.$ $\mathscr{P})$ the derived object $U_{(a, b)}^{\prime}=U^{\prime}=\left(U_{0}^{\prime} ; U_{x}^{\prime}\right.$ $\left.x \in \mathscr{P}_{(a, b)}^{\prime}\right)$ given by
$U_{0}^{\prime}=U_{0}$
$U_{c_{i}^{+}}^{\prime}=U_{a}+U_{c_{i}}$ and $U_{c_{i}^{-}}^{\prime}=U_{b} \cap U_{c_{i}}$, for all i
$U_{x}^{\prime}=U_{x}$, for all others points.
If $\phi: U \rightarrow V$ is a morphism in $\operatorname{rep}(\mathscr{P}, k)$ we define $\phi_{(a, b)}^{\prime}=\phi^{\prime}=\phi$.
Theorem:
With the same notations as above, the differentiation functor ($)_{(a, b)}^{\prime}$ induces a quotient categories equivalence
$\operatorname{rep}(\mathscr{P}, k) /\left\{\left\{k(a), k\left(a, c_{1}\right), \ldots, k\left(a, c_{n}\right)\right\}\right\rangle \rightleftarrows$

$$
\operatorname{rep}\left(\mathscr{P}_{(a, b)}^{\prime}, k\right) /\langle k(a)\rangle .
$$

In particular,
$|\operatorname{Ind}(\mathscr{P}, k)|=\left|\operatorname{Ind}\left(\mathscr{P}_{(a, b)}^{\prime}, k\right)\right|+n$.

Matrix Representation

Let (\mathscr{P}, k) be a poset with a suitable pair, and $\omega(\mathscr{P}) \leq 3$. Let U in $\operatorname{rep}(\mathscr{P}, k)$ and M_{U} a matrix presentation of U.

The lines are the order relation between the points. In other words the operations between columns in that direction. Then we split the rows using U_{b}.

Using admitted transformations on the matrix. With $\left(E_{0}, W_{0}\right)$ be the complementary pair of $\left(U_{a}, U_{b}\right)$.

\leftrightarrow linearly independent columns, I identity, * an arbitrary matrix and H_{n}, F_{n} matrix for c_{n}^{+}.

Integration

Let $W^{\uparrow} \in \operatorname{rep}(\mathscr{P}, k)$ such that $\left(W^{\uparrow}\right)^{\prime}=W \oplus k^{m}(a)$. The integration is not a functorial operation. Define $Z_{c_{j}^{+}}=F_{j} \oplus H_{j} \oplus \underline{Z}_{c_{j}^{+}}$and $Z_{b} \cap Z_{c_{j}^{+}}=F_{j} \oplus\left(\sum_{x<c_{j}^{+}} Z_{b} \cap Z_{x}\right)$
Let $d_{j}=\operatorname{dim} F_{j}$ and fix $\left\{f_{1}^{j}, \ldots, f_{d_{j}}^{j}\right\}$ a base for F_{j} over k. Let E a k space with $\operatorname{dim} E=m=\sum_{j=1}^{n} d_{j}$ with a fix base $\left\{e_{i}^{j} \mid i \in\left\{1, \ldots, d_{j}\right\}\right\}$.Let $g_{i}^{j}=e_{i}^{j}+f_{i}^{j} \in Z_{0}^{\uparrow}$. We Define $Z_{(a, b)}^{\uparrow}=Y=\left(Y_{0}, Y_{x} \mid x \in \mathscr{P}\right)$ in $\operatorname{rep}(\mathscr{P}, k)$ as follows:

$$
\begin{aligned}
Y_{0} & =E \oplus Z_{0}, \\
Y_{x} & =E \oplus Z_{x} \quad \text { si } x \in a^{\nabla}, \\
Y_{x} & =E \oplus Z_{x} \quad \text { si } x \in b_{\Delta}, \\
Y_{c_{1}} & =H_{1}+Z_{c_{1}^{-}}^{-}+k g_{1}^{1}+\cdots+k g_{d_{1}}^{1}, \\
Y_{c_{j}} & =H_{j}+Z_{c_{j}^{-}}+Z_{c_{j_{-1}^{-1}}}+k g_{1}^{j}+\cdots+k g_{d_{j}}^{j} \quad \text { for } j \in\{2, \ldots, n\},
\end{aligned}
$$

References

- Nazarova, L.A. and A.V Roiter(1972). «Representations of partially ordered sets». Zap. Nauchn. Sem. LO-MI 28, pag. 5-31.
- Medina, G. and A.G Zavadskij (2004) «The fur sub space problem: An elementary solution». inear Algebra and its Applications 392, pag 11-23
- Zavadskij, A. (2005) «On Two-Point Differentiation and its Generalization». AMS
- Nazarova, L. A. (1967). «Representations of a tetrad». Izv. Akad Nauk SSSR, Ser.Matem. 31, No. 6, pag 1361-1378.
- Zavadskij, A. (1977). «Differentiation with respect to a pair of points.» Russian. Matrix Problems. Ed. by Y. A. Mitropolskii y L. A. Nazarova, pag. 115-121.

