Matrix Representation of Differentiation Algorithm with respect to a suitable pair.

Maria del Rosario Valencia Arévalo

Coauthor: Harrinson Andres Arrubla Ramirez

University of Texas Rio Grande Valley and Universidad Nacional de Colombia

mariadelrosario.valenciaarevalo01@utrgv.edu and harrinson.arrubla01@utrgv.edu

Abstract

The representation of partially ordered sets (posets) over an arbitrary field were introduced by Nazarova and Roiter, together with a differentiation algorithm to classify the posets representations of width less than or equal to 3. These representations are presented in matrices, transforming a partially ordered sets representation problem into a matrix problem. In this research we present in detail the matrix version of the differentiation algorithm with respect to suitable pair of points.

Differentiation with respect to suitable pair

A pair (a, b) is suitable if $\mathscr{P} = a \nabla + b_{\triangle} + C$, with $C = \{c_1 < \cdots < c_n\}$ a (possibly empty) chain. For such a pair, we let

 $\mathscr{P}'_{(a,b)} = \left((a^{\nabla} + b_{\Delta}) \backslash C \right) \cup C^+ \cup C^-.$

We have a differentiation functor

$$()'_{(a,b)}: \operatorname{rep}(\mathscr{P},k) \to \operatorname{rep}(\mathscr{P}'_{(a,b)},k)$$

which assigns to each object $U = (U_0; U_x \mid x \in \mathscr{P}'_{(a,b)})$ the derived object $U'_{(a,b)} = U' = (U'_0; U'_x \mid x \in \mathscr{P}'_{(a,b)})$ given by

 $U'_{0} = U_{0}$ $U'_{c_{i}^{+}} = U_{a} + U_{c_{i}} \text{ and } U'_{c_{i}^{-}} = U_{b} \cap U_{c_{i}}, \text{ for all } i$ $U'_{x} = U_{x}, \text{ for all others points.}$

If $\phi: U \to V$ is a morphism in $\operatorname{rep}(\mathscr{P}, k)$ we define $\phi'_{(a,b)} = \phi' = \phi$.

Matrix Representation

Let (\mathscr{P}, k) be a poset with a suitable pair, and $\omega(\mathscr{P}) \leq 3$. Let U in rep (\mathscr{P}, k) and M_U a matrix presentation of U.

The lines are the order relation between the points. In other words the operations between columns in that direction. Then we split the rows using U_b .

Using admitted transformations on the matrix. With (E_0, W_0) be the complementary pair of (U_a, U_b) .

 (ω, \circ)

Theorem:

With the same notations as above, the differentiation functor $()'_{(a,b)}$ induces a quotient categories equivalence

 $\operatorname{rep}(\mathscr{P},k)/\langle \{k(a),k(a,c_1),\ldots,k(a,c_n)\}\rangle \rightleftharpoons \operatorname{rep}(\mathscr{P}'_{(a,b)},k)/\langle k(a)\rangle.$

In particular,

 $|\operatorname{Ind}(\mathscr{P},k)| = |\operatorname{Ind}(\mathscr{P}'_{(a,b)},k)| + n.$

 \leftrightarrow linearly independent columns, I identity, * an arbitrary matrix and H_n, F_n matrix for c_n^+ .

Integration

Let $W^{\uparrow} \in \operatorname{rep}(\mathscr{P}, k)$ such that $(W^{\uparrow})' = W \oplus k^m(a)$. The integration is not a functorial operation. Define $Z_{c_j^+} = F_j \oplus H_j \oplus \underline{Z}_{c_j^+}$ and $Z_b \cap Z_{c_j^+} = F_j \oplus \left(\sum_{x < c_j^+} Z_b \cap Z_x\right)$. Let $d_j = \dim F_j$ and fix $\{f_1^j, \ldots, f_{d_j}^j\}$ a base for F_j over k. Let E a kspace with dim $E = m = \sum_{j=1}^n d_j$ with a fix base $\{e_i^j \mid i \in \{1, \ldots, d_j\}\}$.Let $q_j^j = e_j^j + f_j^j \in Z_0^{\uparrow}$ We Define $Z_j^{\uparrow} = Y = (Y_0, Y_n \mid x \in \mathscr{P})$ in $\operatorname{rep}(\mathscr{P}, k)$

 $Y_0 = E \oplus Z_0,$ $Y_x = E \oplus Z_x \quad \text{si } x \in a^{\nabla},$ $Y_x = E \oplus Z_x \quad \text{si } x \in b_{\Delta},$ $Y_{c_1} = H_1 + Z_{c_1^-} + kg_1^1 + \dots + kg_{d_1}^1,$

$$g_i - e_i + f_i \in \mathbb{Z}_0$$
. We Define $\mathbb{Z}_{(a,b)} - I = (I_0, I_x | x \in \mathcal{F})$ in rep (\mathcal{F}, κ) as follows:

$$Y_{c_j} = H_j + Z_{c_j^-} + Z_{c_{j-1}^-} + kg_1^j + \dots + kg_{d_j}^j \quad \text{for } j \in \{2, \dots, n\},$$

References

- Nazarova, L.A. and A.V Roiter(1972). «Representations of partially ordered sets». Zap. Nauchn. Sem. LO-MI 28, pag. 5-31.
- Medina, G. and A.G Zavadskij (2004) «The fur sub space problem: An elementary solution». inear Algebra and its Applications 392, pag 11-23
- Zavadskij , A. (2005) «On Two-Point Differentiation and its Generalization». AMS
- Nazarova, L. A. (1967). «Representations of a tetrad». Izv. Akad Nauk SSSR, Ser.Matem. 31, No. 6, pag 1361-1378.
- Zavadskij, A. (1977). «Differentiation with respect to a pair of points.» Russian. Matrix Problems. Ed. by Y. A. Mitropolskii y L. A. Nazarova, pag. 115-121.