

Continuous-Flow Synthesis of CdTe Quantum Dots in Microfluidic System

ZUZANNA LAWERA

Advanced Nanoscience Laboratory, Department of Physics and Astronomy, University of Texas Rio Grande Valley, MS Physics, November 2020

SUPERVISOR: DR. KAREN MARTIROSYAN

AGENDA

NANOSCALE QUANTUM DOTS

MICROFLUIDIC SYSTEM

RESEARCH IDEA

RESULTS

NANOSCALE

https://commons.wikimedia.org/wiki/File:Biological_and_technological_scales_compared-en.svg Credit: Guillaume Paumier, Philip Ronan, NIH, Artur Jan Fijałkowski, Jerome Walker, Michael David Jones, Tyler Heal, Mariana Ruiz, Science Primer (National Center for Biotechnology Information), Liquid_2003, Arne Nordmann & The Tango! Desktop Project Creative Commons Attribution-Share Alike 2.5 Generic license.

NANOSTRUCTURES

QDs are 0-dimensional structures —

Electrons are confined in three dimensions.

QUANTUM DOTS

ORGANIC LIGANDS

QUANTUM DOTS

Figure credits: Quantum Nanostructures (QDs): An Overview D. Sumanth Kumar, B. Jai Kumar and H.M. Mahesh Department of Electronic Science, Thin Films and Solar Cells Laboratory, Bangalore University, Bengaluru, India

QUANTUM DOTS

UNUSUAL PROPERTIES:

- high photoluminescence
- narrow emission
- tunable wavelength (from UV to IR)
- photochemical stability

Image credits: <u>https://www.dday.it/redazione/15213/cosa-sono-le-tv-quantum-dots</u>

APPLICATIONS:

- optoelectronic devices
- quantum computing
- displays
- medical imaging

Building devices from colloidal quantum dots By Cherie R. Kagan, Efrat Lifshitz, Edward H. Sargent, Dmitriv. Talapin SCIENCE26 AUG 2016

CHARACTERIZATION

٠	X-Ray Powder Diffraction Analysis	>	 characterization of crystalline materials determination of unit cell dimensions measurement of sample purity
٠	Optical Absorption Spectroscopy		determination of energy band-gapcalculating the size of QDs
٠	Photoluminescence Spectroscopy		• the photoluminescence peak wavelength
٠	Tunneling Electron Microscopy	>	 2D images of the nanocrystal determination of the size and shape
٠	Scanning Electron Microscopy		 3D images of the nanocrystal determination of the size and shape characterization of material structures (SEM/EDX)

MICROFLUIDICS SYSTEM

Image credits: Darwin Microfluidics from the website https://darwin-microfluidics.com/

CONNECTIONS

Fig. (a) Image of PTFE tubing embedded into a heated block. (b) Image of an in-line fluorescence detector. (c) Image of an in-line absorption unit. Image credits: Acc. Chem. Res. 2017. 50, 1248–1257

HEATING

SYRINGE PUMPS

TUBING

RESERVOIRS

DETECTORS

MICROFLUIDICS SYSTEM

PRECISE CONTROL OVER CRUCIAL PARAMETERS:

- Temperature
- Flow velocity
- Cross section area
- Reaction time

BENEFITS:

- Efficient mixing
- High heat and mass transfer
- High surface-to-volume ratio
- Temperature control
- Continuous production
- Low reagents consumptions

IDEAL FOR LARGE-SCALE SYNTHESIS

RESEARCH

CdTe QDs

MY PROJECT

Optimize the synthesis of CdTe quantum dots by Microfluidics System

SYNTHESIS

CdTe QDs synthesis recipe

In a flask A:

0.475 g of CdCl₂·2.5 H₂0 (n=2,09 mmol) dissolve in 100 ml of deionized water, stir for 10 minutes. When solution is clear add 0.3mL of TGA. Add NH4OH in small portions to maintain pH around 11.

In a flask B:

0.667 g of TeO₂ (n=4.18 mmol) dissolve in small amount of 1M NaOH solution (10.05mL) and fill it with water to 100 ml.

Mixture in a flask A heat to 80°C and add Te precursor. Substantially heat the mixture to 110°C and keep it in that temperature for 30 minutes.

Synthesis of CdTe

CLASSICAL SYNTHESIS

CLASSICAL SYNTHESIS

Figure 1. UV-Vis Absorption Spectroscopy measurement of purified and unpurified CdTe quantum dots obtained by classical synthesis.

Figure 1. Photoluminescence Spectroscopy measurement of CdTe quantum dots obtained by classical synthesis.

PURIFICATION PROCESS

Why the purification process is important?

stability

Purification process:

- High concentration of the QDs solution
- Precipitate with acetone
- Centrifuge the sample

MICROFLUIDICS SYNTHESIS

MICROFLUIDICS SYNTHESIS

CdTe QDs obtained in microfluidics

Synthesis number	Tube length	Flow rate
S 3	80 cm	10 rpm
S4	200 cm	10 rpm
S 5	720 cm	5 rpm

- Peek tube deepen in oil bath
- Peek tube diameter d= 0.064 cm
- Temperature 110°C
- Argon flow

MICROFLUIDICS SYNTHESIS

CdTe QDs obtained in microfluidics

Figure 1. UV-Vis Absorption Spectroscopy measurement CdTe quantum dots synthesized in microfluidics system.

Figure 2. UV-Vis Photoluminescence Spectroscopy measurement CdTe quantum dots synthesized in microfluidics system.

CdTe QDs

X-RAY POWDER DIFFRACTION

PLANS FOR THE FUTURE

- Further work on purification of QDs samples
- Full characterization of CdTe QDs physicochemical properties
 - SEM and TEM imaging
 - L XRD
 - L Absorption and Emission Spectroscopy
- Increase the efficiency of the QDs synthesis by microfluidics
- Synthesis of Magnetic Quantum Dots
- Encapsulating QDs for biocompatibility

LITERATURE

- I. D. Sumanth Kumar, B. Jai Kumar and H.M. Mahesh; Quantum Nanostructures (QDs): An Overview
- 2. Wang, G., & Su, X. (2011). The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. The Analyst, 136(9), 1783. doi:10.1039/ clan15036g
- 3. Cozzoli, P. D., Pellegrino, T., & Manna, L. (2006). Synthesis, properties and perspectives of hybrid nanocrystal structures. Chemical Society Reviews, 35(11), 1195. doi:10.1039/ b517790c
- 4. Su Seong Lee, In Su Lee, and, and Young Keun Chung* (1996) Preparation and Reactivity of $[(\eta_6-CH_3-\eta_5-2-sil-C_6H_4)Fe(CO)_3]BF4$ (sil = Si(OCH_2CH_2)_3N)
- 5. Selvan, S.T. Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (Mini-Review). Biointer- phases 2010, 5, FA110-FA115.
- 6. Lignos, I.; Maceiczyk, R.; deMello, A. J. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. Acc. Chem. Res. 2017, 50, 1248–1257.
- 7. Subbiramaniyan Kubendhiran, Zhen Bao, Kashyap Dave, and Ru-Shi Liu; Microfluidic Synthesis of Semiconducting Colloidal Quantum Dots and Their Applications
- 8. R. M. Maceiczyk, Kim Dümbgen, I. Lignos, L. Protesescu, M. V. Kovalenko, and A. J. deMello Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals
- 9. Rhyner, M. N., Smith, A. M., Gao, X., Mao, H., Yang, L., & Nie, S. (2006). Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging.

10. Mahajan, K. D., Fan, Q., Dorcéna, J., Ruan, G., & Winter, J. O. (2013). Magnetic quantum dots in biotechnology - synthesis and applications. Biotechnology Journal, 8(12), 1424–1434.

Advanced Nanoscience Laboratory

Dr. Karen Martirosyan Dr. Mkhitar Hobosyan

Mauricio De Leo Silverio Lopez

Thank You!

THANK YOU FOR THE ATTENTION!

UTRio Grande Valley

Department of Physics