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Definition

Hadamard Matrices are m ×m square matrices with entries
+1 and −1 and with mutually orthogonal columns. The rows
are also mutually orthogonal.
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History and Applications

Hadamard Matrices were first discovered by James Sylvester
in 1867 who established how to create matrices of order 2k for
any k ∈ N.

In 1893, Jacques Hadamard introduced the Hadamard
Conjecture, stating that an Hadamard matrix exists when
m = 1, m = 2, and m = 4k where k ∈ N.

The smallest multiple of 4 (but not of the form 2k) for which
no Hadamard matrix is known is 668.

Hadamard matrices are used in applications such as image
processing and error-correcting codes.
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Important Property of Hadamard Matrices

QTQ =


m 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 m


E (Q) =

∑
i ,j

|QTQ| −m2 = 0

We will use E (Q) as energy to measure how close a matrix is
to being an Hadamard matrix.
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Simulated Annealing

We were inspired by A. Suksmono’s work that uses a method
called The Simulated Annealing Algorithm with a Metropolis
update criteria on an ising model in order to construct
Hadamard matrices.

The Simulated Annealing is a stochastic algorithm to find
global minimum of a function.

This process is similar to the annealing of metals where the
metal is heated up and then slowly cooled down in order to
reduce its hardness.

The algorithm requires large number of matrix algebra
operations, which can be very slow when the computation is
done in serial way.

We build on a previous math project by Adanary Ramirez,
who achieved partial parallelization of the algorithm.
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Simulated Annealing Algorithm

Start by randomly selecting a Q0 matrix with balanced +1
and -1 entries in each column except for the first one, which
consists of all +1.

For a matrix Q we define its energy as

E (Q) =
∑
i ,j

|QTQ| −m2

While E(Q)> 0 we randomly flip +1 and -1 entries from
random columns

If the energy decreases then we accept the change and accept
the new Q matrix.
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Problem with the Algorithm

The algorithm can get stuck in a bad matrix configuration
that does not improve anymore

A solution to this problem is The Metropolis - Hasting
method.
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Metropolis-Hasting Update Criteria

Probability as a Function of Time t: P = 0.5e−Ct

Accept the new matrix with some probability even if its energy
is not smaller in order to avoid getting stuck in a bad
configuration.

If C is too large, then the process might get stuck.

If C is too small, then the convergence is too slow.
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Improvement - Fixing Columns

Depending on the size of the matrix, we were able to fix a
certain number of columns by rearranging rows, such that
these columns are already mutually orthogonal to each other.

This means the algorithm has less columns to work with.

For k = 2, This resulted in a 40% decrease in iteration steps
on average.
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Fixing Columns k = 3

This resulted in a 10% decrease in iteration steps on average.
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CPU vs GPU

CPUs do mostly serial calculations and working with large
matrices is ineffective on them.

GPUs (graphics processing units) can do thousands of
calculations in parallel.

In the previous project some but not all steps were done on
the GPU and the frequent data transfer between CPU and
GPU slowed down the calculations.

In this project we implemented the flipping of +1/− 1 pairs
on the GPU using the Python package CuPy.
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Working on the GPU

Create balanced number of random +1 and −1 entries in each
column

for J in range(s,m):

Q[:, J] =

cupy.sign(cupy.random.permutation(m)-(2*k-0.5))

Calculate energy: E =
∑

i ,j

∣∣QTQ
∣∣
ij
−m2

E[0] =

cupy.sum(cupy.absolute(cupy.dot(cupy.transpose(Q),Q)))-m2

Copy matrix Q to Q1

Q1=cupy.copy(Q)
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CUDA Kernel Code in Python

modules = SourceModule("""

__global__ void flip_pairs(float *Q, int col, int row1,

int row2, int M)

{

int i = blockDim.x*blockIdx.x+threadIdx.x;

int i1 = row1*M+col;

int i2 = row2*M+col;

//If index match and signs are opposite, flip signs

if(((i==i1) || (i==i2)) && (Q[i1] != Q[i2]))

{

Q[i1] *= -1.0; // Flip signs

Q[i2] *= -1.0;

}

}

""")

blocksx = 64

blocks = (blocksx,1,1)

grids = (math.ceil(m2/blocksx),1,1)

Flip_Pairs(grids, blocks, (Q1, colindx, rowindx1, rowindx2, m))
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Speed Comparison of the Kernel code for 105 Iteration

Size of
Matrix

Serial Code CuPy Code
Speed up
from Serial
(times)

20× 20 9s 32s 0.3
40× 40 12s 32s 0.4

100× 100 61s 32s 1.9
500× 500 7861s 57s 137.9
668× 668 18600s 94s 197.9

For small matrices our CuPy code was slower than the serial
code.

For the 500× 500 matrix our CuPy code was more than 100×
faster than the serial code.

For the 668× 668 matrix our CuPy code was almost 200×
faster than the serial code.
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Summary and Future Plans

In order to find Hadamard matrices using stochastic
computations (Simulated Annealing):

We made all computational steps parallel on the GPU instead
of on the CPU.
We fixed some columns to reduce the number of columns that
are needed to change.
The largest Hadamard found so far is a 16× 16 matrix.

Future Plans

Automate the fixing of columns for larger matrices.
Change the probability function for the Metropolis-Hasting
update criteria to automate the avoidance of getting stuck.
Find a previously unknown Hadamard matrix (size 668 matrix).

R. Ruiz, A. Balogh Simulated Annealing for the Construction of Hadamard Matrices



16/16

References

Suksmono, Andriyan (2016)

Finding a Hadamard Matrix by Simulated Annealing of Spin-Vectors

Journal of Physics: Conference Series 18(3), 66 – 70.

Suksmono, Andriyan (2016)

Probabilistic Construction and Analysis of Seminormalized Hadamard
Matrice

arXiv:1606.09368 15(2), 6–12.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido and Crissman
Loomis.

CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations.

Proceedings of Workshop on Machine Learning Systems (LearningSys) in
The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), (2017).

R. Ruiz, A. Balogh Simulated Annealing for the Construction of Hadamard Matrices


