Simulated Annealing for the Construction of Hadamard Matrices

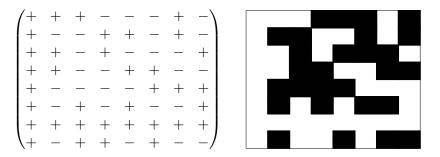
Raven Ruiz and Adanary Ramirez Faculty Advisor: Dr. Andras Balogh

University of Texas Rio Grande Valley raven.ruiz01@utrgv.edu

November 20, 2020

Definition

 Hadamard Matrices are m × m square matrices with entries +1 and -1 and with mutually orthogonal columns. The rows are also mutually orthogonal.



<ロ> <四> <四> <三> <三> <三</p>

- Hadamard Matrices were first discovered by James Sylvester in 1867 who established how to create matrices of order 2^k for any k ∈ N.
- In 1893, Jacques Hadamard introduced the Hadamard Conjecture, stating that an Hadamard matrix exists when m = 1, m = 2, and m = 4k where k ∈ N.
- The smallest multiple of 4 (but not of the form 2^k) for which no Hadamard matrix is known is 668.
- Hadamard matrices are used in applications such as image processing and error-correcting codes.

Important Property of Hadamard Matrices

$$Q^{T}Q = \begin{pmatrix} m & 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & m \end{pmatrix}$$
$$E(Q) = \sum_{i,j} |Q^{T}Q| - m^{2} = 0$$

• We will use E(Q) as energy to measure how close a matrix is to being an Hadamard matrix.

Simulated Annealing

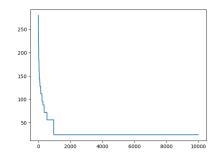
- We were inspired by A. Suksmono's work that uses a method called The Simulated Annealing Algorithm with a Metropolis update criteria on an ising model in order to construct Hadamard matrices.
- The Simulated Annealing is a stochastic algorithm to find global minimum of a function.
- This process is similar to the annealing of metals where the metal is heated up and then slowly cooled down in order to reduce its hardness.
- The algorithm requires large number of matrix algebra operations, which can be very slow when the computation is done in serial way.
- We build on a previous math project by Adanary Ramirez, who achieved partial parallelization of the algorithm.

- Start by randomly selecting a Q_0 matrix with balanced +1 and -1 entries in each column except for the first one, which consists of all +1.
- For a matrix Q we define its energy as

$$E(Q) = \sum_{i,j} |Q^T Q| - m^2$$

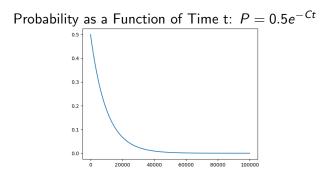
- While E(Q) > 0 we randomly flip +1 and -1 entries from random columns
 - If the energy decreases then we accept the change and accept the new Q matrix.

• The algorithm can get stuck in a bad matrix configuration that does not improve anymore



A solution to this problem is The Metropolis - Hasting method.

Metropolis-Hasting Update Criteria

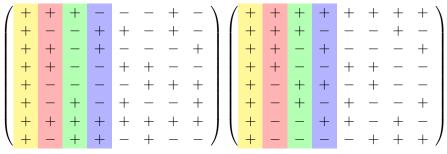


- Accept the new matrix with some probability even if its energy is not smaller in order to avoid getting stuck in a bad configuration.
- If C is too large, then the process might get stuck.
- If C is too small, then the convergence is too slow.

э.

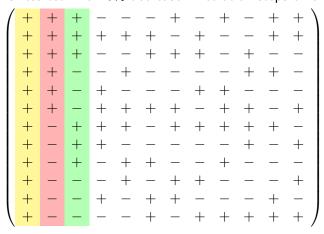
Improvement - Fixing Columns

- Depending on the size of the matrix, we were able to fix a certain number of columns by rearranging rows, such that these columns are already mutually orthogonal to each other.
- This means the algorithm has less columns to work with.
- For k = 2, This resulted in a 40% decrease in iteration steps on average.



Fixing Columns k = 3

• This resulted in a 10% decrease in iteration steps on average.



- CPUs do mostly serial calculations and working with large matrices is ineffective on them.
- GPUs (graphics processing units) can do thousands of calculations in parallel.
- In the previous project some but not all steps were done on the GPU and the frequent data transfer between CPU and GPU slowed down the calculations.
- In this project we implemented the flipping of +1/-1 pairs on the GPU using the Python package CuPy.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで 11/16

Working on the GPU

• Create balanced number of random +1 and -1 entries in each column

```
for J in range(s,m):
    Q[:, J] =
        cupy.sign(cupy.random.permutation(m)-(2*k-0.5))
```

• Calculate energy:
$$\textit{E} = \sum_{i,j} \left| \textit{Q}^{\mathsf{T}} \textit{Q} \right|_{ij} - m^2$$

E[0] =

cupy.sum(cupy.absolute(cupy.dot(cupy.transpose(Q),Q)))-m2

• Copy matrix Q to Q1

Q1=cupy.copy(Q)

```
modules = SourceModule("""
__global__ void flip_pairs(float *Q, int col, int row1,
                         int row2, int M)
ſ
   int i = blockDim.x*blockIdx.x+threadIdx.x;
   int i1 = row1*M+col:
   int i2 = row2*M+col;
   //If index match and signs are opposite, flip signs
   if(((i==i1) || (i==i2)) && (Q[i1] != Q[i2]))
   ł
       Q[i1] *= -1.0; // Flip signs
       Q[i2] *= -1.0;
   }
}
blocksx = 64
blocks = (blocksx, 1, 1)
grids = (math.ceil(m2/blocksx),1,1)
Flip_Pairs(grids, blocks, (Q1, colindx, rowindx1, rowindx2, m))
```

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ の�� 13/16

Speed Comparison of the Kernel code for 10⁵ Iteration

Size of Matrix	Serial Code	CuPy Code	Speed up from Serial (times)
20 imes 20	9s	32s	0.3
40 imes 40	12s	32s	0.4
100 imes 100	61s	32s	1.9
500 imes 500	7861s	57s	137.9
668×668	18600s	94s	197.9

- For small matrices our CuPy code was slower than the serial code.
- For the 500 \times 500 matrix our CuPy code was more than 100 \times faster than the serial code.
- For the 668 × 668 matrix our CuPy code was almost 200× faster than the serial code.

- In order to find Hadamard matrices using stochastic computations (Simulated Annealing):
 - We made all computational steps parallel on the GPU instead of on the CPU.
 - We fixed some columns to reduce the number of columns that are needed to change.
 - $\bullet\,$ The largest Hadamard found so far is a 16 $\times\,$ 16 matrix.
- Future Plans
 - Automate the fixing of columns for larger matrices.
 - Change the probability function for the Metropolis-Hasting update criteria to automate the avoidance of getting stuck.
 - Find a previously unknown Hadamard matrix (size 668 matrix).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで 15/16

Suksmono, Andriyan (2016)

Finding a Hadamard Matrix by Simulated Annealing of Spin-Vectors *Journal of Physics: Conference Series* 18(3), 66 – 70.

Suksmono, Andriyan (2016)

Probabilistic Construction and Analysis of Seminormalized Hadamard Matrice

arXiv:1606.09368 15(2), 6-12.

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido and Crissman Loomis.

CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations.

Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS), (2017).

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 - 釣�� 16/16