IKGV **College of Sciences**

Abstract

Chromium (III), is essential in the diet of humans and animals in trace amounts, it is found in many vegetables, fruits, meats and grains. Cr (III) is also used in industry as dyes and pigments which lead to contaminations in ground and drinking water. In this research, batch studies were performed with the use of Nanoparticles of metal oxides to investigate the binding of Cr(III) to ZnO nanoparticles. The effects were investigated using a series of batch studies which included: pH, time, interferences, kinetics and isotherm studies. Cr (III) concentrations were determined using the ICP-OES. Thermodynamic studies were performed at temperatures of 4°,25° and 45° in order to determine the binding capacity of Cr(III) to ZnO nanoparticles at different temperatures. Interference studies were also investigated using various cations and anions to determine if any effects were present in the binding of Cr (III) to the ZnO nanoparticle.pH studies were also performed, the optimal pH for binding consisted of a pH of 3

Methods

ICP-OES : The parameters using for the ICP-OES analysis were as follows:

Parameter	Setting	
λ	267.716 nm	
RF power	1500 W	
Nebulizer	Gemcone (low flow)	
Plasma Flow	15 L/min	
Auxiliary Flow	0.2 L/min	
Nebulizer Flow	0.55 L/min	
Sample Flow	1.50 mL/min	
Injector	2.0 mm Alumina	
Spray Chamber	Cyclonic	
Integration Time	10-20 seconds	
Replicates	3	

Table 1: Operating parameters for the analysis of chromium binding to the ZnO nanoparticles

X-ray Diffraction (XRD):

XRD analysis was performed on a Bruker D2 Phaser Diffractometer. The ZnO adsorbent was analyzed from a range of 5 - 60° in 2 θ . With a step size of 0.05 ° with step of count size of 2 seconds per step.

pH studies

The binding of Chromium (III) ions of a concentration of 300 ppb were tested in a pH range of 2-6. The solutions were adjusted using HNO₃ or NaOH in-order to increase or decrease pH . The pH adjusted samples and control were adjusted in sets of 3 and equilibrated for 1 hour. Samples and controls were centrifuged at a rpm of 3500. Samples containing ions and ZnO were decanted and supernatants were used for analysis. The analyzation of supernatants samples were performed in an ICP-OES.

Thermodynamic Studies

The thermodynamic studies consisted of various temperatures ranging from 4°C, 23°C, and 45°C and determined from the capacity studies, and standard thermodynamic relationships.

Interference Studies

The Interference studies were performed using various cations (Mg, Ca, Na, K,) and combination of all cations. The ion concentrations analyzed consisted of 0.3, 3.0, 30, 100, 300 and 1000 ppm for each set to observe effects on the binding of Cr(III) to ZnO.

Time Studies

The rate and order of the reaction ion species Cr (III) was achieved by performing the reactions between the Cr Ions and ZnO at specific timed lapses

Removal of Chromium(III) from aqueous solution using ZnO nanoparticles Kevin Van der kam, Daniel Ramirez Santos Garcia, Julio Romero and J. G. Parsons Department of Chemistry, The University of Texas – Rio Grande Valley The University of Rio Grande Valley, 1 W University Blvd, Brownsville, TX 78520

Results				
Ec	uation		Ea (kJ)	
y = -548	4.2x + 14.473		45.59	
able 1: Activation energy from an Arrhenius plot				
Equation	R ²	Temperature(°C)	Capacity (mg/g)	
		4	29.41	
5423.4x + 21.832	$R^2 = 0.9467$	25	50	
		45	212.76	
apacities for the binding of cr(III) to the ZnO nanoparticles				
∆G (kJ/mol)		ΔH (kJ/mol)	ΔS (J/mol)	
2.62 (277K)				
0.86 (298K)		-53.4	181.5	
-4.83 (318K)				