Lax Representation For Camassa-Holm Hierarchy

Miguel Rodriguez (PGRA)

Advisor: Dr. Zhijun Qiao
School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley

Abstract

We study the Camassa-Holm (CH) hierarchy and its Lax representation. The CH hierarchy is an integrable hierarchy of nonlinear evolution equations. It includes the well-known Camassa-Holm equation, a model for the propagation of waves in shallow water. We start from the CH spectral problem and find Lenard's operators. Then, we construct the recursion operator, which gives rise to Lenard's sequences and the CH vector fields. Finally, through finding the solution to a key matrix equation, we obtain the Lax representation for the hierarchy.

Spectral Problem

The Camassa-Holm spectral problem is given by:

$$
\psi_{x x}=\frac{1}{4} \psi-\frac{1}{2} m \lambda \psi
$$

where λ is an eigenvalue, ψ is the corresponding eigenfunction, m is a potential function, x is the spatial variable, and subscripts denote partial derivatives.

Lenard's Operators

To find Lenard's operators we set $\nabla \lambda=\psi^{2}$, where $\nabla \lambda$ represents the gradient of the eigenvalue λ with respect to the potential function m, and search for the operators K and J which satisfy: $K \cdot \nabla \lambda=\lambda J \cdot \nabla \lambda$.

$$
\begin{gathered}
\Rightarrow(\nabla \lambda)_{x}=2 \psi \psi_{x} \\
\Rightarrow(\nabla \lambda)_{x x}=2\left(\psi_{x}^{2}+\psi^{2}\left(\frac{1}{4}-\frac{1}{2} m \lambda\right)\right) \\
\Rightarrow(\nabla \lambda)_{x x x}=(1-2 m \lambda)(\nabla \lambda)_{x}-m_{x} \lambda(\nabla \lambda) \\
\Rightarrow\left(-\partial^{3}+\partial\right) \cdot \nabla \lambda=\lambda(\partial m+m \partial) \cdot \nabla \lambda
\end{gathered}
$$

So, Lenard's operators are $K=-\partial^{3}+\partial$ and $J=\partial m+m \partial$, where ∂ represents a partial derivative with respect to x.

Recursion Operator

The recursion operator is given by

$$
\mathcal{L}=J^{-1} K=\frac{1}{2} m^{-\frac{1}{2}} \partial^{-1} m^{-\frac{1}{2}}\left(\partial-\partial^{3}\right)
$$

where J^{-1} is the inverse of J. We also find

$$
\mathcal{L}^{-1}=-e^{-x} \partial^{-1} e^{2 x} \partial^{-1} e^{-x} \partial^{-1}(\partial m+m \partial)
$$

where ∂^{-1} is the integral operator.

Lenard's Sequences

First, we take an element G_{0} from the kernel of J.

$$
\begin{aligned}
\text { Ker } J & =\{G \mid J \cdot G=0\} \\
\Rightarrow J \cdot G_{0} & =\left(2 m^{\frac{1}{2}}\left(m^{\frac{1}{2}} G_{0}\right)_{x}\right)=0 \\
\Rightarrow & G_{0}=m^{-\frac{1}{2}}
\end{aligned}
$$

We also take an element G_{-1} from the kernel of K.

$$
\begin{gathered}
\text { Ker } K=\{G \mid K \cdot G=0\} \\
\Rightarrow K \cdot G_{-1}=\left(G_{-1}\right)_{x}-\left(G_{-1}\right)_{x x x}=0 \\
\Rightarrow G_{-1}=a+b e^{x}+c e^{-x}
\end{gathered}
$$

where a, b, c are constants. We select $a=-1, b=0, c=0$, since those values lead to the CH equation.

$$
\Rightarrow G_{-1}=-1
$$

Next, we define Lenard's sequences as:

$$
G_{j}= \begin{cases}\mathcal{L}^{j} \cdot G_{0}, & j \geq 0 \\ \mathcal{L}^{j+1} \cdot G_{-1}, & j<0\end{cases}
$$

where j is an integer.

Camassa-Holm Hierarchy

The Camassa-Holm hierarchy is defined as:

$$
m_{t_{k}}=J \cdot G_{k}, \quad k=0,1,2, .
$$

where each k gives a different nonlinear evolution equation. For example:

$$
m_{t_{1}}=\left(m^{-\frac{1}{2}}\right)_{x}-\left(m^{-\frac{1}{2}}\right)_{x x x}
$$

is a Dym type equation. Also, by setting $m=u-u_{x x}$, we get

$$
m_{t-2}=-2 m u_{x}-m_{x} u
$$

which is the Camassa-Holm equation.

Lax Representation

To find the Lax form, we first solve the following matrix equation for $V(G)$:

$$
V_{x}-[U, V]=U_{*}(K \cdot G-\lambda J \cdot G)
$$

where

$$
U=\left(\begin{array}{cc}
0 & 1 \\
\frac{1}{4}-\frac{1}{2} m \lambda & 0
\end{array}\right)
$$

U_{*} is its directional derivative, G is an arbitrary function, and [] represents the commutator. This matrix equation has the solution:

$$
V(G)=\lambda\left(\begin{array}{cc}
-\frac{1}{2} G_{x} & -G \\
\frac{1}{2} G_{x x}-\frac{1}{4} G+\frac{1}{2} m \lambda G & \frac{1}{2} G_{x}
\end{array}\right)
$$

Finally, the Lax representation for the CH hierarchy is given by:

$$
U_{t_{k}}-V_{k, x}+\left[U, V_{k}\right]=0, \quad k \in \mathbb{Z}
$$

where

$$
V_{k}=\sum V\left(G_{j}\right) \lambda^{k-j-1}, \quad \sum= \begin{cases}\sum_{j=0}^{k-1}, & k>0 \\ 0, & k=0 \\ -\sum_{j=k}^{-1}, & k<0\end{cases}
$$

