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Defining recursion
a starting step
how each step builds on each other
when to stop stepping

Figure: The larger Russian dolls have room inside them for the smaller dolls;
the larger recursive function defines smaller recursive functions inside of itself.
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Recursion example - Fibonacci Numbers

Definition

Given F0 = 1 and F1 = 1, we define Fibonacci numbers as:

∀ n ≥ 2 : Fn = Fn−1 + Fn−2

For example:
F2 = F2 + F1 = 1 + 1 = 2
F3 = F3 + F2 = 2 + 1 = 3
F4 = F4 + F3 = 3 + 2 = 5
F5 = F5 + F4 = 5 + 3 = 8
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Defining polynomials

poly means many
nomial means term

Polynomials are some function of x with many terms!
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Defining recursive polynomials

at least 1 starting term
some function of x , usually defined by γ(x), that builds on terms
an n ∈ N that defines when the function stops

Figure: The arrangement of seeds in a sunflower can be described recursively
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Fibonacci polynomials

Definition

Given initial conditions F0 = 1 and F1 = x and γ(x) = x as a function
of x , define a Fibonacci polynomial as:

∀ n ≥ 2 : Fn(x) = x ∗ Fn−1(x) + Fn−2(x)

For Example:
F2 = x2 + 1
F3 = x3 + 2x
F4 = x4 + 3x2 + 3x
F5 = x5 + 4x3 + 3x
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Formula for Fibonacci polynomials

Below are formulas that generate even indices of Fibonacci polynomials:

F2n(x) =
k=n∑
k=0

(
2n − k

k

)
x2n−2k F2n =

k=n∑
k=0

1
k !
∗ dk

dxk (x2n−k )

Binomial expansion Taylor expansion

Figure: MATLAB code verified results
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Roots for Fibonacci polynomials

The following formula represents the exact expression of roots of Fn(x):

When Fn(x) = 0 :

x = 2i cos
kπ
n

for k = 1,2,3, ..., n − 1

Hogatt discovered this unique result for Fibonacci polynomials.
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Golden polynomials

Definition

Given initial conditions G0 = −1 and G1 = x − 1 and γ(x) = x as
a function of x , define Golden polynomials as:

∀ n ≥ 2 : Gn(x) = x ∗Gn−1(x) + Gn−2(x)

For Example:
G2 = x2 − x − 1
G3 = x3 − x2 − 1
G4 = x4 − x3 + x2 − 2x − 1
G5 = x5 − x4 + 2x3 − 3x2 − x − 1
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Roots for Golden polynomials

Figure: Moore found the limit of the maximum roots of Gn(x) is 3
2
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Generalizing Golden polynomials

Alternate Definition

Given initial conditions G0 = −1 and G1 = x − 1 and γ(x) = x as
a function of x , redefine Golden polynomials as:

∀ n ≥ 2 : Gn(x) = x1 ∗Gn−1(x) + x0 ∗Gn−2(x)

= x ∗Gn−1(x) + 1 ∗Gn−2(x)

= x ∗Gn−1(x) + Gn−2(x)

Then we can describe some function x1 multiplied by Gn−1(x) term,
and some function x0 multiplied by Gn−2(x) term.
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Generalized Gn(x) in terms of k and l

Definition

With initial conditions G0(x) = −1 and G1(x) = x − 1, generalize the
Golden polynomials as:

∀ n ≥ 2 : Gn(x) = xk ∗Gn−1(x) + x l ∗Gn−2(x)

We have already shown the example for k = 1 and l = 0. When

k = l = 1,

Gn(x) = x ∗ (Gn−1(x) + Gn−2(x))
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Gn(x) for k = l = 1

G0 = −1
G1 = x − 1
G2 = x2 − 2x
G3 = x3 − x2 − x
G4 = x4 − 3x2

G5 = x5 + x4 − 4x3 − 2x2

G6 = x6 + 2x5 − 4x4 − 4x3

G7 = x7 + 3x6 − 3x5 − 8x4 − x3

G8 = x8 + 4x7 − x6 − 12x5 − 5x4

G9 = x9 + 5x8 + 2x7 − 15x6 − 13x5 − x4
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Pascal triangles in Fn(x)

Coefficients of Fibonacci polynomial form a Pascal 2-triangle.

Figure: from Falcón and Plaza based on Fn(x), Hogatt’s polynomial
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Pascal triangles in Gn(x): k = l = 1

G0(x) 1
G1(x) 1 -1
G2(x) 1 -2
G3(x) 1 -1 -1
G4(x) 1 0 -3
G5(x) 1 1 -4 1
G6(x) 1 2 -4 -4
G7(x) 1 3 -3 -8 -1
G8(x) 1 4 -1 -12 -5
G9(x) 1 5 2 -15 -13 -1
G10(x) 1 6 6 -16 -25 -6
G11(x) 1 7 11 -14 -40 -19 -1
G12(x) 1 8 17 -8 -56 -44 -7
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Pascal triangles in Gn(x): k = l = 1
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Pascal triangles in Gn(x): k = l = 2

G0(x) 1
G1(x) 1 -1
G2(x) 1 -2
G3(x) 1 -2 1 -1
G4(x) 1 -2 2 -3
G5(x) 1 -2 3 -5 1 -1
G6(x) 1 -2 4 -7 3 -4
G7(x) 1 -2 5 -9 6 -9 1 -1
G8(x) 1 -2 6 -11 10 -16 4 -5
G9(x) 1 -2 7 -13 15 -25 10 -14 1 -1
G10(x) 1 -2 8 -15 21 -36 20 -30 5 -6

Observe how elements in each row increase by 2
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Pascal triangles in Gn(x): k = l = 2

Observe how elements in each row increase by 2
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Pascal triangles in Gn(x): k = 1, l = 2?

G0(x) 1x0

G1(x) 1x1 −1x0

G2(x) 0x2 −1x1

G3(x) 1x3 −2x2

G4(x) 1x4 −3x3

G5(x) 2x5 −5x4

G6(x) 3x6 −8x5

G7(x) 5x7 −13x6

G8(x) 8x8 −21x7

G9(x) 13x9 −34x8

G10(x) 21x10 −55x9

G11(x) 34x11 −89x10

Gn(x) = Fn−2xn − Fnxn−1
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General matrix representations of Gn(x)

Formula One:[
Gn+2(x) Gn+1(x)
Gn+1(x) Gn(x)

]
=

[
xk x l

1 0

]
n−1
[
G3(x) G2(x)
G2(x) G1(x)

]

Formula Two:Gn+4 Gn+3 Gn+2
Gn+3 Gn+2 Gn+1
Gn+2 Gn+1 Gn

 =

xk x l 0
1 0 0
0 1 0

n−1
G5 G4 G3

G4 G3 G2
G3 G2 G1
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Binet forms of Gn(x) sequences

Sequence for x = 2:

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Gn
-1 1 0 2 4 12 32 88 240 656

For Initial Conditions G0 = −1 and G1 = 1:

Gn = (

√
3

3
− 1

2
)(1 +

√
3)n + (−

√
3

3
− 1

2
)(1−

√
3)n

Example for n = 6:

G6 = (

√
3

3
− 1

2
)(1 +

√
3)6 + (−

√
3

3
− 1

2
)(1−

√
3)6 = 32
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Binet form to find Gn(x) itself

The following formula produces the exact result for Gn(x):

Gn(x) =

√
x2 + 4x − 3x + 2
−2
√

x2 + 4x

(
x +
√

x2 + 4x
2

)n

+

√
x2 + 4x + 3x − 2
−2
√

x2 + 4x

(
x −
√

x2 + 4x
2

)n
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Shifted Fibonacci numbers

We observed that when x = 1, we always yielded the negative
Fibonacci numbers ∀ n ∈ N where n >0.

G1 G2 G3 G4 G5 G6 G7 G8 Gn
−F0 −F1 −F2 −F3 −F4 −F5 −F6 −F7 −Fn−1

0 -1 -1 -2 -3 -5 -8 -13

We observed this pattern persisted for cases where k = l .
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More shifted Fibonacci numbers

Say k = 2, l = 4, and x = −1. Then we get:

G0 G1 G2 G3 G4 G5 G6 G7 Gn
−F2 −F3 −F4 −F5 −F6 −F7 −F8 −F9 −Fn+2
-1 -2 -3 -5 -8 -13 -21 -34

The pattern seems to hold whenever k and l are even, and x = −1.
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Shifted Lucas numbers

Take this example where k = 1, l = 2 and x = −1:

G1 G2 G3 G4 G5 G6 G7 G8 Gn
−L0 L1 −L2 L3 −L4 L5 −L6 L7 (−1)n ∗ Ln−1
-2 1 -3 4 -7 11 -18 29

The pattern seems to hold when k is odd, l is even, and x = −1.
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Cyclical sequences - 3 terms

What if we plug in x = −1 instead?:

G0 G1 G2 G3 G4 G5 G6 G7 G8 Gn
-1 -2 3 -1 -2 3 -1 -2 3 G3n = −1

G3n+1 = −2
G3n+2 = 3

This seems to hold whenever k and l are odd and x = −1.
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Cyclical sequences - 6 terms

Now let’s look at the opposite, k = 2 and l = 1 for x = −1:

G0 G1 G2 G3 G4 G5 G6 G7 G8 Gn
-1 -2 -1 1 2 1 -1 -2 -1 G6n = −1

G6n+1 = −2
G6n+2 = −1
G6n+3 = 1
G6n+4 = 2
G6n+5 = 1

The pattern seems to hold so long as k is even, l is odd, and x = −1.
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Ratios between Gn(x) sequences

To explain our next results, we will introduce a new notation.

lim
n→∞

Gn+1(x)

Gn(x)
=???
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Continued fraction notation - linear form

Number Also known as As a continued fraction

1.5 3
2 [ 1; 2]

2.66 8
3 [ 2; 1,2]

3.1415... π [ 3; 7,15,1,292,1,1, ...]
1.4141...

√
2 [ 1; 2]
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Continued fraction example - Φ

Φ = 1 +
1

1 + 1
1+ 1

1+ 1...

In linear form Φ is expressed as

[1;1,1,1,1,1,1, ...] ⇐⇒ [1;1]
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Results for k = l = 1 - golden numbers

x limn→∞
Gn+1(x)
Gn(x) Continued fraction form

1 1.618034 [ 1; 1]

2 2.732051 [ 2; 1,2]

3 3.791288 [ 3; 1,3]

4 4.828427 [ 4; 1,4]

5 5.854102 [ 5; 1,5]

6 6.872983 [ 6; 1,6]

7 7.887482 [ 7; 1,7]
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Results for k = l = 2

x limn→∞
Gn+1(x)
Gn(x) Continued fraction form

1 1.618034 [ 1; 1]

2 4.828427 [ 4; 1,4]

3 9.908326 [ 9; 1,9]

4 16.94427 [ 16; 1,16]

5 25.96291 [ 25; 1,25]

6 36.97366 [ 36; 1,36]

7 49.98038 [ 49; 1,49]
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Conjecture ∀ x ∈ N : k = l

lim
n→∞

Gn+1(x)

Gn(x)
= [ xk ; 1, xk ]

= xk +
1

1 + 1
xk+ 1

1+ 1
xk+ 1...
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Results for k = 2, l = 1

x limn→∞
Gn+1(x)
Gn(x) Continued fraction form

1 1.618034 [ 1; 1]

2 4.449489 [ 4; 2,4]

3 9.321825 [ 9; 3,9]

4 16.24621 [ 16; 4,16]

5 25.19842 [ 25; 5,25]

6 36.16590 [ 36; 6,36]

7 49.14244 [ 49; 7,49]
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Conjecture ∀x ∈ N : k 6= l , k > l

lim
n→∞

Gn+1(x)

Gn(x)
= [ xk ; x l , xk ]

= xk +
1

x l + 1
xk+ 1

xl+ 1
xk+ 1...
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Results for k = 1, l = 2

x limn→∞
Gn+1(x)
Gn(x) Alternate form

1 1.618034 1 ∗ Φ

2 3.236068 2 ∗ Φ

3 4.854098 3 ∗ Φ

4 6.472134 4 ∗ Φ

5 8.090168 5 ∗ Φ

6 9.708202 6 ∗ Φ

7 11.32623 7 ∗ Φ
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Conjecture ∀x ∈ N : k = 1, l = 2

lim
n→∞

Gn+1(x)

Gn(x)
= x ∗ Φ

These results are also conjectured about ∀ x ∈ Z.

Other interesting results for negative x will continue to be researched,
observed and conjectured about further.
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Utility of the generalized Gn(x)

Generalizing Gn(x) allows us to make conclusions about its max root gn.
Similar to Moore we

looked for a pattern - graphing and calculating Gn(x)

proved existence of roots - using sequences to support the claim
identified whether gn was increasing, decreasing - or both
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Root for k = 2 and l = 1
This is really cool - as n→∞ we see that the limit of the max root gn of
Gn(x) approaches this quantity:

1
1− 2 ∗ sin ( π18)

⇐⇒ 1
pc(honeycomb bond)

This interesting quantity in the denominator is an exact quantity of
what’s referred to as pc(honeycomb bond).
This is a constant related to the field of percolation theory
Determining an exact expression for other percolation thresholds,
including of the square site percolation, remains an open problem -
one which could be studied further with continued research of
recursive polynomials - and a nice hot cup of coffee!
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Root for k = 1 and l = 2
This is really cool - as n→∞ we see that the limit of the max root gn of
Gn(x) approaches this quantity - though convergence is not as obvious:

Φ + 2 ⇐⇒ 3 +
√

5
2

⇐⇒ [2; 1] ⇐⇒ 2 +
1

1 + 1
1+ 1

1+ 1
1+ 1

...

For fun we checked a couple of other cases keeping k = 1 but
increasing l , unfortunately the pattern did not continue.
This can be explained by the unique quality of the k = 1 and l = 2
case where there are only ever 2 terms.
Increasing l creates more terms, which in turn, creates more roots
that breaks the identified pattern

Kristen Hallas Recursive Polynomials 14th October 2020 41 / 43



Concluding remarks

With continued research, we seek to:
Generalize the behavior of sequences and the ratio between
sequences for a recursive polynomial, based on the parity of k and l
Extend matrix results to 4 x 4, 5 x 5, and up to n x n matrices
Explore the existence of Pascal-3, Pascal-4, and up to Pascal-m
type triangles for various k and l
Characterize complex roots and the range in which the entirety of
roots of Gn can be found
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