Recursive Polynomials

Forms \& patterns of the Golden-type

Kristen Hallas

RioGrandeValley

Acknowledgments

This research was supported by the National Security Agency, the National Science Foundation, and Michigan State University.

NSA Award No. H98230-20-1-0006

NSF Award No. 1852066

Big thanks to Joan Mattle from Ithaca College and Deanna Perez from California State University, Fullerton, for their collaboration on this project. Much appreciation goes to Aklilu Zeleke from Michigan State University for his mentorship throughout the summer.

What to expect

1 Important definitions

2 Fibonacci polynomials

3 Golden polynomials

4 Our work - generalizing Golden polynomials

- Forms
- Patterns

5 Further study

Defining recursion

- a starting step

■ how each step builds on each other
■ when to stop stepping

Figure: The larger Russian dolls have room inside them for the smaller dolls; the larger recursive function defines smaller recursive functions inside of itself.

Recursion example - Fibonacci Numbers

Definition

Given $F_{0}=1$ and $F_{1}=1$, we define Fibonacci numbers as:

$$
\forall n \geq 2: F_{n}=F_{n-1}+F_{n-2}
$$

For example:

$$
\begin{aligned}
& F_{2}=F_{2}+F_{1}=1+1=2 \\
& F_{3}=F_{3}+F_{2}=2+1=3 \\
& F_{4}=F_{4}+F_{3}=3+2=5 \\
& F_{5}=F_{5}+F_{4}=5+3=8
\end{aligned}
$$

Defining polynomials

- poly means many

■ nomial means term
Polynomials are some function of x with many terms!

Defining recursive polynomials

■ at least 1 starting term

- some function of x, usually defined by $\gamma(x)$, that builds on terms
- an $n \in \mathbb{N}$ that defines when the function stops

Figure: The arrangement of seeds in a sunflower can be described recursively

Fibonacci polynomials

Definition

Given initial conditions $F_{0}=1$ and $F_{1}=x$ and $\gamma(x)=x$ as a function of x, define a Fibonacci polynomial as:

$$
\forall n \geq 2: F_{n}(x)=x * F_{n-1}(x)+F_{n-2}(x)
$$

For Example:

$$
\begin{aligned}
& F_{2}=x^{2}+1 \\
& F_{3}=x^{3}+2 x \\
& F_{4}=x^{4}+3 x^{2}+3 x \\
& F_{5}=x^{5}+4 x^{3}+3 x
\end{aligned}
$$

Formula for Fibonacci polynomials

Below are formulas that generate even indices of Fibonacci polynomials:

$$
\begin{array}{cc}
F_{2 n}(x)=\sum_{k=0}^{k=n}\binom{2 n-k}{k} x^{2 n-2 k} & F_{2 n}=\sum_{k=0}^{k=n} \frac{1}{k!} * \frac{d^{k}}{d x^{k}}\left(x^{2 n-k}\right) \\
\text { Binomial expansion } & \text { Taylor expansion }
\end{array}
$$

Figure: MATLAB code verified results

Roots for Fibonacci polynomials

The following formula represents the exact expression of roots of $F_{n}(x)$:

$$
\begin{gathered}
\text { When } F_{n}(x)=0: \\
\qquad x=2 i \cos \frac{k \pi}{n} \\
\text { for } k=1,2,3, \ldots, n-1
\end{gathered}
$$

Hogatt discovered this unique result for Fibonacci polynomials.

Golden polynomials

Definition

Given initial conditions $G_{0}=-1$ and $G_{1}=x-1$ and $\gamma(x)=x$ as a function of x, define Golden polynomials as:

$$
\forall n \geq 2: G_{n}(x)=x * G_{n-1}(x)+G_{n-2}(x)
$$

For Example:

$$
\begin{aligned}
& G_{2}=x^{2}-x-1 \\
& G_{3}=x^{3}-x^{2}-1 \\
& G_{4}=x^{4}-x^{3}+x^{2}-2 x-1 \\
& G_{5}=x^{5}-x^{4}+2 x^{3}-3 x^{2}-x-1
\end{aligned}
$$

Roots for Golden polynomials

Figure: Moore found the limit of the maximum roots of $G_{n}(x)$ is $\frac{3}{2}$

Generalizing Golden polynomials

Alternate Definition

Given initial conditions $G_{0}=-1$ and $G_{1}=x-1$ and $\gamma(x)=x$ as a function of x, redefine Golden polynomials as:

$$
\begin{aligned}
\forall n \geq 2: G_{n}(x) & =x^{1} * G_{n-1}(x)+x^{0} * G_{n-2}(x) \\
& =x * G_{n-1}(x)+1 * G_{n-2}(x) \\
& =x * G_{n-1}(x)+G_{n-2}(x)
\end{aligned}
$$

Then we can describe some function x^{1} multiplied by $G_{n-1}(x)$ term, and some function x^{0} multiplied by $G_{n-2}(x)$ term.

Generalized $G_{n}(x)$ in terms of k and $/$

Definition

With initial conditions $G_{0}(x)=-1$ and $G_{1}(x)=x-1$, generalize the Golden polynomials as:

$$
\forall n \geq 2: G_{n}(x)=x^{k} * G_{n-1}(x)+x^{\prime} * G_{n-2}(x)
$$

We have already shown the example for $k=1$ and $I=0$. When $k=l=1$,

$$
G_{n}(x)=x *\left(G_{n-1}(x)+G_{n-2}(x)\right)
$$

$G_{n}(x)$ for $k=I=1$

$$
\begin{aligned}
& G_{0}=-1 \\
& G_{1}=x-1 \\
& G_{2}=x^{2}-2 x \\
& G_{3}=x^{3}-x^{2}-x \\
& G_{4}=x^{4}-3 x^{2} \\
& G_{5}=x^{5}+x^{4}-4 x^{3}-2 x^{2} \\
& G_{6}=x^{6}+2 x^{5}-4 x^{4}-4 x^{3} \\
& G_{7}=x^{7}+3 x^{6}-3 x^{5}-8 x^{4}-x^{3} \\
& G_{8}=x^{8}+4 x^{7}-x^{6}-12 x^{5}-5 x^{4} \\
& G_{9}=x^{9}+5 x^{8}+2 x^{7}-15 x^{6}-13 x^{5}-x^{4}
\end{aligned}
$$

UTRGV.

Pascal triangles in $F_{n}(x)$

Coefficients of Fibonacci polynomial form a Pascal 2-triangle.

Table 3
The Pascal 2-triangle

1.							1						
2.							1						
3.						1		1					
4.						1		2					
5.					1		3		1				
6.					1		4		3				
7.				1		5		6		1			
8.				1		6		10		4			
9.			1		7		15		10		1		
10.			1		8		21		20		5		
11.		1		9		28		35		15		1	
12.		1		10		36		56		35		6	
13.	1		11		45		84		70		21		1
14.	1		12		55		120		126		56		7

Figure: from Falcón and Plaza based on $F_{n}(x)$, Hogatt's polynomial

Pascal triangles in $G_{n}(x): k=I=1$

$G_{0}(x)$						1						
$G_{1}(x)$					1		-1					
$G_{2}(x)$					1		-2					
$G_{3}(x)$				1		-1		-1				
$G_{4}(x)$				1		0		-3				
$G_{5}(x)$			1		1		-4		1			
$G_{6}(x)$			1		2		-4		-4			
$G_{7}(x)$		1		3		-3		-8		-1		
$G_{8}(x)$		1		4		-1		-12		-5		
$G_{9}(x)$			5		2		-15		-13		-1	
$G_{10}(x)$			6		6		-16		-25		-6	
$G_{11}(x)$	1	7		11		-14		-40		-19		-1
$G_{12}(x)$	1	8		17		-8		-56		-44		-7

Pascal triangles in $G_{n}(x): k=I=1$

$G_{0}(x)$				1					
$G_{1}(x)$			1		-1				
$G_{2}(x)$			1		-2				
$G_{3}(x)$		1		-1		-1			
$G_{4}(x)$		1		0		-3			
$G_{5}(x)$		1	1		-4		1		
$G_{6}(x)$		1	2		-4		-4		
$G_{7}(x)$	1	3		-3		-8		-1	
$G_{8}(x)$	1	4		-1		-12		-5	
$G_{9}(x)$	(1)	5)			-15				
$G_{10}(x)$		(6)							
$G_{11}(x)$	1	11		-14		40		1	-1
$G_{12}(x)$	18	17		-8		-56		-44	-7

UTRGV

Pascal triangles in $G_{n}(x): k=I=2$

$G_{0}(x)$				1	1	-1			
$G_{1}(x)$				1	-2				
$G_{2}(x)$			1	-2	1	-1			
$G_{3}(x)$			1	-2	2	-3			
$G_{4}(x)$			-2	3	-5	1	-1		
$G_{5}(x)$		1	-2	4	-7	3	-4		
$G_{6}(x)$		1	-2	5	-9	6	-9	1	-1
$G_{7}(x)$	1	-2	6	-11	10	-16	4	-5	
$G_{8}(x)$	1	-2	-13	15	-25	10	-14	1	-1
$G_{9}(x)$	1	-2	7	-13					
$G_{10}(x)$	1	-2	8	-15	21	-36	20	-30	5

Observe how elements in each row increase by 2

UTRGV

Pascal triangles in $G_{n}(x): k=I=2$

Observe how elements in each row increase by 2

Pascal triangles in $G_{n}(x): k=1, I=2 ?$

$G_{0}(x)$	$1 x^{0}$	
$G_{1}(x)$	$1 x^{1}$	$-1 x^{0}$
$G_{2}(x)$	$0 x^{2}$	$-1 x^{1}$
$G_{3}(x)$	$1 x^{3}$	$-2 x^{2}$
$G_{4}(x)$	$1 x^{4}$	$-3 x^{3}$
$G_{5}(x)$	$2 x^{5}$	$-5 x^{4}$
$G_{6}(x)$	$3 x^{6}$	$-8 x^{5}$
$G_{7}(x)$	$5 x^{7}$	$-13 x^{6}$
$G_{8}(x)$	$8 x^{8}$	$-21 x^{7}$
$G_{9}(x)$	$13 x^{9}$	$-34 x^{8}$
$G_{10}(x)$	$21 x^{10}$	$-55 x^{9}$
$G_{11}(x)$	$34 x^{11}$	$-89 x^{10}$

$$
G_{n}(x)=F_{n-2} x^{n}-F_{n} x^{n-1}
$$

UTRGV

General matrix representations of $G_{n}(x)$

Formula One:

$$
\left[\begin{array}{cc}
G_{n+2}(x) & G_{n+1}(x) \\
G_{n+1}(x) & G_{n}(x)
\end{array}\right]=\left[\begin{array}{cc}
x^{k} & x^{\prime} \\
1 & 0
\end{array}\right]^{n-1}\left[\begin{array}{ll}
G_{3}(x) & G_{2}(x) \\
G_{2}(x) & G_{1}(x)
\end{array}\right]
$$

Formula Two:

$$
\left[\begin{array}{ccc}
G_{n+4} & G_{n+3} & G_{n+2} \\
G_{n+3} & G_{n+2} & G_{n+1} \\
G_{n+2} & G_{n+1} & G_{n}
\end{array}\right]=\left[\begin{array}{ccc}
x^{k} & x^{\prime} & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]^{n-1}\left[\begin{array}{lll}
G_{5} & G_{4} & G_{3} \\
G_{4} & G_{3} & G_{2} \\
G_{3} & G_{2} & G_{1}
\end{array}\right]
$$

Binet forms of $G_{n}(x)$ sequences

Sequence for $x=2$:

G_{0}	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{9}	G_{n}
-1	1	0	2	4	12	32	88	240	656	

For Initial Conditions $G_{0}=-1$ and $G_{1}=1$:

$$
G_{n}=\left(\frac{\sqrt{3}}{3}-\frac{1}{2}\right)(1+\sqrt{3})^{n}+\left(-\frac{\sqrt{3}}{3}-\frac{1}{2}\right)(1-\sqrt{3})^{n}
$$

Example for $n=6$:

$$
G_{6}=\left(\frac{\sqrt{3}}{3}-\frac{1}{2}\right)(1+\sqrt{3})^{6}+\left(-\frac{\sqrt{3}}{3}-\frac{1}{2}\right)(1-\sqrt{3})^{6}=32
$$

Binet form to find $G_{n}(x)$ itself

The following formula produces the exact result for $G_{n}(x)$:

$$
\begin{aligned}
G_{n}(x) & =\frac{\sqrt{x^{2}+4 x}-3 x+2}{-2 \sqrt{x^{2}+4 x}}\left(\frac{x+\sqrt{x^{2}+4 x}}{2}\right)^{n} \\
& +\frac{\sqrt{x^{2}+4 x}+3 x-2}{-2 \sqrt{x^{2}+4 x}}\left(\frac{x-\sqrt{x^{2}+4 x}}{2}\right)^{n}
\end{aligned}
$$

UTRGV

Shifted Fibonacci numbers

We observed that when $x=1$, we always yielded the negative Fibonacci numbers $\forall n \in \mathbb{N}$ where $n>0$.

G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{n}
$-F_{0}$	$-F_{1}$	$-F_{2}$	$-F_{3}$	$-F_{4}$	$-F_{5}$	$-F_{6}$	$-F_{7}$	$-F_{n-1}$
0	-1	-1	-2	-3	-5	-8	-13	

We observed this pattern persisted for cases where $k=l$.

More shifted Fibonacci numbers

Say $k=2, I=4$, and $x=-1$. Then we get:

G_{0}	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{n}
$-F_{2}$	$-F_{3}$	$-F_{4}$	$-F_{5}$	$-F_{6}$	$-F_{7}$	$-F_{8}$	$-F_{9}$	$-F_{n+2}$
-1	-2	-3	-5	-8	-13	-21	-34	

The pattern seems to hold whenever k and $/$ are even, and $x=-1$.

Shifted Lucas numbers

Take this example where $k=1, I=2$ and $x=-1$:

G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{n}
$-L_{0}$	L_{1}	$-L_{2}$	L_{3}	$-L_{4}$	L_{5}	$-L_{6}$	L_{7}	$(-1)^{n} * L_{n-1}$
-2	1	-3	4	-7	11	-18	29	

The pattern seems to hold when k is odd, $/$ is even, and $x=-1$.

Cyclical sequences - 3 terms

What if we plug in $x=-1$ instead?:

G_{0}	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{n}
-1	-2	3	-1	-2	3	-1	-2	3	$G_{3 n}=-1$ $G_{3 n+1}=-2$ $G_{3 n+2}=3$

This seems to hold whenever k and $/$ are odd and $x=-1$.

UTRGV

Cyclical sequences - 6 terms

Now let's look at the opposite, $k=2$ and $I=1$ for $x=-1$:

G_{0}	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{n}
-1	-2	-1	1	2	1	-1	-2	-1	$G_{6 n}=-1$
									$G_{6 n+1}=-2$
									$G_{6 n+2}=-1$
									$G_{6 n+3}=1$
									$G_{6 n+4}=2$
$G_{6 n+5}=1$									

The pattern seems to hold so long as k is even, $/$ is odd, and $x=-1$.

Ratios between $G_{n}(x)$ sequences

To explain our next results, we will introduce a new notation.

$$
\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}=? ? ?
$$

Continued fraction notation - linear form

Number	Also known as	As a continued fraction
1.5	$\frac{3}{2}$	$[1 ; 2]$
$2 . \overline{66}$	$\frac{8}{3}$	$[2 ; 1,2]$
$3.1415 \ldots$	π	$[3 ; 7,15,1,292,1,1, \ldots]$
$1.4141 \ldots$	$\sqrt{2}$	$[1 ; \overline{2}]$

Continued fraction example - Ф

In linear form Φ is expressed as

$$
[1 ; 1,1,1,1,1,1, \ldots] \Longleftrightarrow[1 ; \overline{1}]
$$

UTRGV

Results for $k=l=1$ - golden numbers

x	$\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}$	Continued fraction form
1	1.618034	$[1 ; \overline{1}]$
2	2.732051	$[2 ; \overline{1,2}]$
3	3.791288	$[3 ; \overline{1,3}]$
4	4.828427	$[4 ; \overline{1,4}]$
5	5.854102	$[5 ; \overline{1,5}]$
6	6.872983	$[6 ; \overline{1,6}]$
7	7.887482	$[7 ; \overline{1,7}]$

Results for $k=I=2$

x	$\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}$	Continued fraction form
1	1.618034	$[1 ; \overline{1}]$
2	4.828427	$[4 ; \overline{1,4}]$
3	9.908326	$[9 ; \overline{1,9]}$
4	16.94427	$[16 ; \overline{1,16}]$
5	25.96291	$[25 ; \overline{1,25}]$
6	36.97366	$[36 ; \overline{1,36}]$
7	49.98038	$[49 ; \overline{1,49}]$

Conjecture $\forall x \in \mathbb{N}: k=I$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}=\left[x^{k} ; \overline{1, x^{k}}\right] \\
& \quad=x^{k}+\frac{1}{1+\frac{1}{x^{k}+\frac{1}{1+\frac{1}{x^{k}+\frac{1}{\ldots}}}}}
\end{aligned}
$$

UTRGV

Results for $k=2, I=1$

x	$\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}$	Continued fraction form
1	1.618034	$[1 ; \overline{1}]$
2	4.449489	$[4 ; \overline{2,4}]$
3	9.321825	$[9 ; \overline{3,9}]$
4	16.24621	$[16 ; \overline{4,16}]$
5	25.19842	$[25 ; \overline{5,25}]$
6	36.16590	$[36 ; \overline{6,36}]$
7	49.14244	$[49 ; \overline{7,49}]$

Conjecture $\forall x \in \mathbb{N}: k \neq I, k>I$

$$
\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}=\left[x^{k} ; \overline{x^{\prime}, x^{k}}\right]
$$

$$
=x^{k}+\frac{1}{x^{\prime}+\frac{1}{x^{k}+\frac{1}{x^{\prime}+\frac{1}{x^{k}+\frac{1}{\ldots}}}}}
$$

UTRGV

Results for $k=1, l=2$

x	$\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}$	Alternate form
1	1.618034	$1 * \Phi$
2	3.236068	$2 * \Phi$
3	4.854098	$3 * \Phi$
4	6.472134	$4 * \Phi$
5	8.090168	$5 * \Phi$
6	9.708202	$6 * \Phi$
7	11.32623	$7 * \Phi$

UTRGV

Conjecture $\forall x \in \mathbb{N}: k=1, I=2$

$$
\lim _{n \rightarrow \infty} \frac{G_{n+1}(x)}{G_{n}(x)}=x * \Phi
$$

These results are also conjectured about $\forall x \in \mathbb{Z}$.
Other interesting results for negative x will continue to be researched, observed and conjectured about further.

Utility of the generalized $G_{n}(x)$

Generalizing $G_{n}(x)$ allows us to make conclusions about its max root g_{n}. Similar to Moore we

- looked for a pattern - graphing and calculating $G_{n}(x)$
- proved existence of roots - using sequences to support the claim
- identified whether g_{n} was increasing, decreasing - or both

Root for $k=2$ and $I=1$

This is really cool - as $n \rightarrow \infty$ we see that the limit of the max root g_{n} of $G_{n}(x)$ approaches this quantity:

$$
\frac{1}{1-2 * \sin \left(\frac{\pi}{18}\right)} \Longleftrightarrow \frac{1}{p_{c}(\text { honeycomb bond })}
$$

■ This interesting quantity in the denominator is an exact quantity of what's referred to as p_{c} (honeycomb bond).
■ This is a constant related to the field of percolation theory
■ Determining an exact expression for other percolation thresholds, including of the square site percolation, remains an open problem one which could be studied further with continued research of recursive polynomials - and a nice hot cup of coffee!

Root for $k=1$ and $I=2$

This is really cool - as $n \rightarrow \infty$ we see that the limit of the max root g_{n} of $G_{n}(x)$ approaches this quantity - though convergence is not as obvious:

$$
\Phi+2 \Longleftrightarrow \frac{3+\sqrt{5}}{2} \Longleftrightarrow[2 ; \overline{1}] \Longleftrightarrow 2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{w}}}}}
$$

■ For fun we checked a couple of other cases keeping $k=1$ but increasing I, unfortunately the pattern did not continue.

- This can be explained by the unique quality of the $k=1$ and $I=2$ case where there are only ever 2 terms.
- Increasing / creates more terms, which in turn, creates more roots that breaks the identified pattern

Concluding remarks

With continued research, we seek to:

- Generalize the behavior of sequences and the ratio between sequences for a recursive polynomial, based on the parity of k and $/$
- Extend matrix results to $4 \times 4,5 \times 5$, and up to $n \times n$ matrices

■ Explore the existence of Pascal-3, Pascal-4, and up to Pascal-m type triangles for various k and $/$
\square Characterize complex roots and the range in which the entirety of roots of G_{n} can be found

References I

目 G．A．Moore．
The Limit of the Golden Numbers is $3 / 2$ ．
The Fibonacci Quarterly，32：211－217， 1994.
國 G．A．Moore．
A Fibonacci Polynomial Sequence Defined By Multidimensional Continued Fractions；And Higher－Order Golden Ratios．
The Fibonacci Quarterly，31．4：354－64， 1993.
围 V．E．Hogatt，Jr．\＆M．Bicknell．
Roots of Fibonacci Polynomials
The Fibonacci Quarterly，11．3：271－274， 1973.
S．Falcón．\＆Á．Plaza．
On k－Fibonacci sequences and polynomials and their derivatives Chaos，Solitons Fractals，30：1005－1019， 2009.

