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Borel-Tanner Distribution

The probability function of Borel-Tanner (BT) distribution is

pr (x ; θ) = cr (x)θx−re−xθ x = r , r + 1, . . . , (1)

where 0 < θ < 1, r ∈ Z+ and cr (x) = rxx−r−1

(x−r)! . (1) has a mean r
1−θ

and variance rθ
(1−θ)3

Derived as the distribution of the number of customers served
in a single queuing process

In 1942, Emil Borel introduced the distribution for r = 1

In 1953, Tanner generalized for r ∈ Z+
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Applications

Queueing Models

The number of customers served in a busy period of a single-server
queuing process, started with r customers, assuming Poisson
arrivals and constant service time.

Branching Processes (Epidemic Models)

If the number of offspring of an individual is Poisson distributed,
then the total progeny is a BT random variable.

Others

Coalescence models, highway traffic flows, propagation of internet
viruses, cascading failures of energy systems, herd size in finance
modeling, epidemic infections modeled by a branching process.
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LINEX Loss Function

For this research we are interested in estimating the parameter θ,
the reproductive number, or the average number of secondary
infections caused by a host. It is thus important to consider the
severity of under/over estimating θ.

Varian (1975) first defined the linear exponential (linex) loss
function as the following:

Definition

Let a be an estimate of the parameter θ, then the linex loss
function

L(θ, a) = eb(a−θ) − b(a− θ)− 1, b 6= 0
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LINEX Loss Function

L(θ, a) = eb(a−θ) − b(a− θ)− 1, b 6= 0

It’s important to note the asymmetry of the linex error above.

For b > 0, L(θ, a) penalizes
overestimation more than
underestimation

For b < 0, L(θ, a) penalizes
underestimation more than
overestimation
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Classical Bayes Estimators

Let (X ,Θ) be a pair of r.v., where X corresponds to the observable

variable and Θ corresponds to the unknown parameter.

Suppose the parameter θ is a realization of 0 < Θ < 1

Given Θ has a prior distribution G , the Bayes estimate is

ϕG (x) = −1

b
lnE

[
e−bΘ|X = x

]
Assuming G is Uni(m, n) for θ and we can then reduce the above
equation to the following

⇒ ϕG (x) = −1

b
ln
ψG (x , b)

qG (x)
= −1

b
ln

∫ n
m e−bθθx−re−xθ dθ∫ n

m θ
x−re−xθ dθ
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Empirical Bayes Approach

Many times it is reasonable to assume that there

exists a prior distribution, which however, is unknown.

The empirical Bayes approach offers a solution when

the experiment under investigation has been

preceded by a series of comparable experiments. Then

the observations gathered from the preceding experiments can be

used to obtain information about the prior.
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Empirical Bayes Estimators for BT

Liang (2009) constructed an EB estimator for θ at x as follows:
For each integer x = r , r + 1, . . . and k = 1, 2, . . . and each
j = 1, . . . , n, let

ψnj0(x) = I [Xj = x ] /cr (x)

ψnjk(x) = ck(Xj − x)I [Xj ≥ x + k]/cr (Xj)

ψnj(x , b) =
∞∑
k=0

(−b)k

k!
ψnjk(x)
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Define

ψn(x , b) =
1

n

n∑
j=1

ψnj(x , b)

qn(x) =
1

n

n∑
j=1

ψnj0(x)

Lastly recall that ϕG (x) = − 1
b ln ψG (x ,b)

qG (x) Then, for each
x = r , r + 1, . . ., define the EB estimator for θ at x as

ϕn(x) = −1

b
ln

[
(m1(b) ∨ ψn(x , b)

qn(x)
) ∧m2(b)

]
,

where m1(b) = min(e−b, 1) and m2(b) = max(e−b, 1)
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Monotonization of the EB Estimate

The following property can be shown:

Proposition 1 - Soltero (2018)

The Borel-Tanner distribution has a monotone likelihood ratio

q(x) =
pr (x | θ2)

pr (x | θ1)

which is increasing with respect to x when 0 < θ1 < θ2 < 1

Hence, monotonicity is a desirable property for the EB estimator
however, as we will see late, this is not the case for the EB
estimator.
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Randomization

Randomization procedures are designed to ”control” bias as much
as possible. Estimators for discrete distributions, BT for instance,
with monotone likelihood ratio, can be made monotone using a
procedure developed by Houwalingen (1977). Our procedure is as
follows:

For a ∈ (0, 1) the simple randomized version of the estimator
ϕn(x) is represented by:

D(a | x) =
{ 0 if ϕn(x) > a

1 if ϕn(x) ≤ a
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Randomization (cont.)

D(a | x) is the probability that an estimate ϕn(x) ≤ a is selected
given X = x . We define for a ∈ (0, 1)

α(a) = E [D(a | x)] =
∑

x : ϕn(x)≤a

pr (x | a)

And assume

P(x | θ) =
x∑

k=r

pr (k | θ) for x ≥ r ; assume P(r − 1 | θ) = 0

Thus the randomized monotone estimator is defined as follows:

D∗(a | x) =

{ 0 if α(a) < P(x − 1 | a)
α(a)−P(x−1|a)
P(x |a)−P(x−1|a) if P(x − 1 | a) ≤ α(a) ≤ P(x | a)

1 if P(x | a) < α(a)
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Numerical Study

Let X be a discrete random variable following a BT distribution
with a Uni(0.5, 0.8) prior G for Θ and let r = 3, b = 1 and
x = 3, 4, . . . , 20. Then

Bayesian Estimator : ϕG (x) = − ln

∫ 0.8
0.5 e−θθx−3e−xθ dθ∫ 0.8

0.5 θ
x−3e−xθ dθ

We then compute ϕG (x) for each value of x = 3, 4, . . . , 20 using R
statistical software
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Computing the EB Estimate and Monotone Estimate

Next we assume independent identically distributed of the random
pair (X ,Θ), where Θ has Uni(0.5, 0.8) prior G and let
r = 3, b = 1 and n = 20. We then want to compute

ψ20(x , 1) =
1

20

20∑
j=1

ψ20,j(x , 1)

q20(x) =
1

20

20∑
j=1

ψ20,j0(x)
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Numerical Results: r=3, b=1, n=20
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Figure: Estimate comparison for one realization at n=20
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Regret Risks

Definition

The difference R(θ̂) between the Bayes risk and minimum Bayes
risk of any estimator θ̂ is called the Regret Risk

Figure: Note that the Regret of the monotonized Estimator ϕ∗
n is the

smallest implying it is a better estimator than the MLE and EB
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Effects of b on the Regret Risks

L(θ, a) = eb(a−θ) − b(a− θ)− 1, b 6= 0

We wanted to investigate how changing the value of b effects the performance
of the estimates. (i.e. Regret Risk) Below are the results:

Figure: Note for b < 0, the monotonized EB has lower regret than when
b > 0; this is ideal as we prefer a framework where we penalize underestimation
more than overestimation
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Conclusions and Future Objectives

The current objective is to investigate the risk ratios between
the monotonized estimates and the MLE/EB estimates. Then
determine for what value(s) of b is our monotonized estimate
admissable.

Consider the case where the initial infected cases r , is Poisson
random distributed and apply the same procedures when
computing the estimates
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