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3D Navier-Stokes Equations

~Wt − ν∆ ~W +
(
~W · ∇

)
~W +∇P = 0, x ∈ Ω, t > 0

div ~W = 0

spatial variable: x = (x , y , z) ∈ Ω ⊂ R3, time variable: t

viscosity: ν > 0

flow velocity:
~W = ~W (x , y , z , t) = [U (x , y , z , t) ,V (x , y , z , t) ,W (x , y , z , t)]T

pressure: P = P (x , y , z , t)

Divergence-free, incompressible flow: div ~W = Ux + Vy + Wz = 0
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History and Applications

In the early 1800s, the equation was derived by G. G. Stokes
and N. Navier, as an extension to Euler’s equation.

Euler’s equation describes the flow of incompressible and
frictionless fluid, while the Navier-Stokes equation includes the
viscosity of the flow.

The equation represents the system of partial differential
equations that describe the motion of a fluid and gas flow in
space and time.

It is important in many applications such as a flow in a pipe,
airflow around an airplane wing, ocean currents, and weather.

Controlling it is needed in practical applications such as
reducing turbulence, drag, enhancing mixing.

Despite the practical importance, the existence and
uniqueness of solutions to the equations is an open question.
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3D Channel Flow

Simplified geometry for theory and computation
~W = ~W (x , y , z , t) =

[U (x , y , z , t) ,V (x , y , z , t) ,W (x , y , z , t)]T

Wall at the top and bottom y = −1,+1
Flow periodicity in the x and z directions
Pressure drop from x = 0 inlet to x = Lx outlet
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Periodic Boundary Conditions in x and z directions

To simplify calculations and to speed up computations.

U (0, y , z , t) = U (Lx , y , z , t), W (0, y , z , t) = W (Lx , y , z , t)

V (0, y , z , t) = V (Lx , y , z , t), U (x , y , 0, t) = U (x , y , Lz , t)

V (x , y , 0, t) = V (x , y , Lz , t), W (x , y , 0, t) = W (x , y , Lz , t)

Vx (0, y , z , t) = Vx (Lx , y , z , t), Vz (x , y , 0, t) = Vz (x , y , Lz , t)

Uz (x , y , 0, t) = Uz (x , y , Lz , t), Wx (0, y , z , t) = Wx (Lx , y , z , t)

P (0, y , z , t) = P (Lx , y , z , t) + aLx , P (x , y , 0, t) = P (x , y , Lz , t)

The flow is pushed trough the channel by constant pressure drop a.
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Steady State Solution (Poiseuille Flow) (Laminar Flow)

Time independent solution: W =
(
U,V ,W

)T
, where

U (y) =
a

2ν

(
1− y2

)
V = W = 0

P = −ax + b

−1 0 Lx

1

Andras Balogh and Jose Angel Dominguez, UTPA Inverse Optimal Boundary Feedback Control of a 3D Channel Flow – p.8/39

This ideal parabolic flow profile (no turbulence, lowest possible drag
at the walls) does not happen in practice at high flow velocities.

C. Vasquez, A. Balogh Boundary Feedback Control of the 3D Navier-Stokes Equations



7/17

Control Objectives

The goal is to introduce special boundary conditions
(feedback control) in order to stabilize the laminar flow:

~W (x , y , z , t)
t→∞−−−→ ~W (x , y , z) for all x , y , z

In terms of perturbation variable:

~w (x , y , z , t) = ~W (x , y , z , t)− ~W (x , y , z)
t→∞−−−→ 0

The control law is derived using Lyapunov’s method on the
L2–norm of the perturbation variable (perturbation energy).

E (t) = ‖~w‖ =

√∫∫∫
V

(u2 + v2 + w2) dx dy dz
t→∞−−−→ 0
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Boundary Feedback Control (Proportional Error Feedback)

U (x ,−1, z , t) = k
[
Uy (x ,−1, z , t)− a

ν

]
U (x , 1, z , t) = −k

[
Uy (x , 1, z , t) +

a

ν

]
Ucontrol at wall = control gain k × (error in shear stress)

The shear stress is adjusted to that of the steady state profile
Wall–tangential (streamwise) velocity actuation
Other velocity components are kept at zero: Vwall = Wwall = 0

α

αsteady

Uy = tanα
a

ν
= tanαsteady
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Main Theorem

Theorem: If conditions σ =
ν

4
− a

2ν
> 0, (i.e., ν >

√
2a),

0 < k < 1 are satisfied, then the steady state solution is globally
exponentially stable in the L2–sense, i.e., in terms of the
perturbation variables:

‖~w (t) ‖ ≤ ‖~w0‖e−σt

for all t > 0 and for all initial conditions ~w0.
Remarks:

Conservative theoretical result, the viscosity ν has to be large:
ν >
√

2a, where a is the constant pressure drop between the
two ends of the channel.

Numerical simulations show effectiveness of the control for
smaller viscosity/larger Reynolds number.
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Numerical Simulations

Hybrid Fourier pseudospectral–finite difference discretization
and fractional step technique based on a hybrid
Runge–Kutta/Crank–Nicolson finite discretization (Bewley,
Moin, & Temam)

Boundary control (Balogh): implicit three–point end–point
formula

MPI parallel Fortran code, running on the Lonestar5 Cray
XC40 Cluster of the Texas Advanced Computing Center

Reynolds number Reτ =
Ucenterline

ν
≈ 2, 000

Channel dimensions 6π × 2× 2π

Resolution 128× 200× 64
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Scientific Visualization of Computational Results

The visualization of the computational results has been done
using the ParaView open-source, multi-platform data analysis
and visualization application.
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L2 Perturbation Energy
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The uncontrolled perturbation energy oscillates around a
constant value due to turbulence (statistically steady flow).

The control initially creates a large-amplitude oscillation
(nonlinear phase).

The exponential decay from around t = 1, 000 indicates linear
behaviour, like the solution to a linear ode of the form
y ′(t) = −y(t).
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Discriminant

Isosurfaces of the discriminant of the velocity gradient tensor
for the uncontrolled flow (shown only at the bottom wall).

Turbulent structures arising from the boundary layer at the
walls.

Controlled case shows no such thing.
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Spanwise Velocity and Streamwise Vorticity from u, v ,w

Spanwise velocity: (v ,w) showing vortex structures

Streamwise vorticity (x-component of vorticity):
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Velocity Profiles

uncontrolled start of control laminarized
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Summary and Future Plans

Summary

Our boundary feedback control law stabilizes the ideal
parabolic flow profile of the 3D Navier-Stokes equation.

Theory gives limited results (low Reynolds number)

By visualizing different flow quantities we saw that numerical
simulations extend the results to high Reynolds numbers
(Re = 2, 000).

Future Plans

Prove well-posedness (existence and uniqueness) of the
solution (for low Reynolds numbers).

Examine the drag and other flow quantities in simulations.

Find the highest Reynolds number for which the control works.

Check for high Reynolds numbers if turbulence is reduced.
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