Electrical engineering is a broad field with applications in almost all areas of industry including computer systems, control systems, telecommunications, semiconductors, electronics, and electric power. The Department of Electrical Engineering offers a Bachelor of Science in Electrical Engineering (BSEE) degree that is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

This degree provides a broad, solid education in engineering fundamentals as well as the opportunity for in-depth study in specialized topics. Students completing the program will have rigorous foundation for engineering practice in industry as well as for graduate studies in engineering and other disciplines. The program has well-equipped, accessible laboratories and extensive computing facilities.

STUDENT LEARNING OUTCOMES:

1. Be able to use knowledge of mathematics, basic sciences and engineering to analyze (identify, formulate, and solve) problems in electrical engineering.
2. Be able to design and conduct experiments and interpret the results.
3. Be able to design electrical and electronic devices, systems, or processes that meet given specifications.
4. Be able to function in multi-disciplinary teams.
5. Be able to communicate ideas effectively in graphical, oral, and in written media.
6. Understand the professional responsibility of an engineer and how engineering solutions impact safety, economics, ethics, politics, and societal and cultural issues.
7. Understand the need for life long learning to keep abreast of current practice.
8. Be able to use state of the art computational hardware and software for analysis, design, and documentation (techniques, skills, and modern engineering tools necessary for engineering practice).
9. Demonstrate a knowledge of mathematics and basic sciences necessary for the analysis and design of electrical and electronic circuits and systems.
10. Demonstrate an understanding of the principles of electrical circuits and electronics, and analysis, synthesis, and experimental techniques for both analog and digital electronic circuits.
11. Demonstrate an understanding of the applications of electrical engineering principles in systems for communications, controls, and computation, and power.
12. Demonstrate an ability to create and use software both as an analysis and design tool, and as part of systems containing hardware and software.
13. Demonstrate depth of knowledge beyond the basic level in one or more specific electrical engineering topics elected by the student.
14. Demonstrate the ability to use their engineering and project management knowledge to successfully complete design projects of substantial complexity.

A – GENERAL EDUCATION CORE – 42 HOURS

Students must fulfill the General Education Core requirements. The courses listed below satisfy both degree requirements and General Education core requirements.

Required

Mathematics – 3 hours
 MATH 2413 Calculus I (or MATH 2487 Honors) three-hour lecture

Life and Physical Science – 6 hours
 PHYS 2425 Physics for Scientists and Engineers I three-hour lecture
 PHYS 2426 Physics for Scientists and Engineers II three-hour lecture
B – MAJOR REQUIREMENTS – 60 HOURS (48 advanced)

1 – Electrical Engineering Core – 45 hours (33 advanced)
 ELEE 1101 Introduction to Electrical Engineering
 ELEE 2319 Numerical Computation and Data Visualization
 ELEE 2330 Digital Systems Engineering I
 ELEE 2130 Digital Systems Lab
 ELEE 2305 Electrical Circuits I
 ELEE 2105 Electrical Circuits Lab
 ELEE 3321 Signals and Systems
 ELEE 3301 Electronics I
 ELEE 3101 Electronics I Lab
 ELEE 3225 Electrical Engineering Lab I
 ELEE 3230 Electrical Engineering Lab II
 ELEE 3302 Electronics II
 ELEE 3315 Electromagnetics Engineering
 ELEE 3435 Microprocessor Systems
 ELEE 4303 Digital Systems Engineering II
 ELEE 4321 Automatic Control Systems
 ELEE 4351 Communication Theory
 ELEE 4328 Solid State Electronic Devices

2 – Senior Design – 6 hours (6 advanced)
 ELEE 4361 Senior Design I
 ELEE 4362 Senior Design II

3 – Technical Electives – 9 hours (9 advanced)
 Choose from:
 ELEE 3300 Engineering Coop/Internship
 ELEE 3331 Embedded Systems
 ELEE 3370 Power Electronics
 ELEE 3371 Electrical Power Systems
 ELEE 4323 Rapid Control Prototyping
 ELEE 4325 Introduction to Robotics
 ELEE 4333 Topics in Electrical Engineering
 ELEE 4360 High Frequency Engineering
 ELEE 4364 Antennas and Propagation
 ELEE 4365 Digital Signal Processing
 ELEE 4366 Image Processing
 ELEE 4367 Fiber Optic Communications
 ELEE 4368 Electrokinetics in Microsystems
 ELEE 4372 Electrical Machinery and Power System Fundamentals
 ELEE 4373 Renewable Energy
 ELEE 4375 Introduction to VLSI Design
 ELEE 4380 Computer Architecture
C – SUPPORT COURSES – 23 HOURS (6 advanced)

1 – Physics Lab – 2 hours
 PHYS 2425 Physics for Scientists and Engineers I one-hour lab
 PHYS 2426 Physics for Scientists and Engineers II one-hour lab

2 – Basic Science or Engineering Electives – 3 hours
 Choose from:
 CHEM 1307 Chemistry for Engineers
 CHEM 1311 General Chemistry I
 MECE 2301 Statics

3 – Mathematics – 18 hours (6 advanced)
 ELEE 3340 Probability and Statistics for Electrical Engineers
 MATH 2346 Mathematics for Electrical and Computer Engineers
 MATH 2413 Calculus I (or MATH 2487 Honors) one-hour lecture
 MATH 2414 Calculus II (or MATH 2488 Honors)
 MATH 2415 Calculus III
 MATH 3341 Differential Equations

TOTAL CREDIT HOURS FOR GRADUATION – 125 HOURS

TOTAL ADVANCED HOURS – 54 HOURS