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ABSTRACT
In a typical railyard environment, a myriad of large and dy-

namic objects pose significant risks to railyard workers. Uninten-
tional falls, trips and collisions with dynamic rolling stock due to
distractions or lack of situational awareness are an unfortunate
reality in modern railyards. The challenges of current technolo-
gies in detecting and tracking multiple differently-sized mobile
objects in situations such as i) one-on-one, ii) many-to-one, iii)
one-to-many, iv) blind spot, and v) interfering/non-interfering
separation creates the possibility for reduction or loss of situa-
tional awareness in this fast-paced environment. The simultane-
ous tracking of assets with different size, velocity and material
composition in different working and environmental conditions
can only be accomplished through joint infrastructure-based as-
set discovery and localization sensors that cause no interference
or impediment to the railyard workers, and which are capable
of detecting near-misses as well. Our team is investigating the
design and performance of such a solution, and is currently fo-
cusing on the innovative usage of lightweight low-cost RADAR
under different conditions that are expected to be encountered in
railyards across North America. We are employing Ancorteks
580-AD Software Defined RADAR (SDRadar) system, which
operates at the license-free frequency of 5.8 GHz and with a vari-
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ety of different configuration options that make it well-suited for
generalized object tracking. The challenges, however, stem from
the unique interplay between tracking large metallic objects such
as railcars, locomotives, and trucks, as well as smaller objects
such as railyard workers, in particular their robust discernment
from each other. Our design‘s higher-level system can interact
with the lower-level SDRadar design to change the parameters
in real-time to detect and track large objects over significant dis-
tances. The algorithm optimally adjusts waveform, sweep time
and sample rate based on one or multiple detected object cross-
sections and subsequently alters these parameters to be able to
discern other objects from them that are in close proximity. We
also use an ensemble method to determine the velocity and dis-
tance of target objects to accurately track the subject and larger
objects at a distance. The methodology has been field-tested with
several test cases in a multitude of weather and lighting condi-
tions. We have also tested the proper height, azimuth and eleva-
tion angles for positioning our SDRadar to alleviate the risk of
blind spots and enhancing the detection and tracking capabilities
of our algorithm. The approach has outperformed our previous
tests using visual and acoustic sensors for detection and tracking
railroad workers in terms of accuracy and operating flexibility. In
this paper, we discuss the details of our proposed approach and
present our results from the field tests.
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NOMENCLATURE
ADAS Advanced Driver Assistance Systems
ATx Adaptive Transmit
bw Bandwidth of the transmitted signal
CW Continuous Wave
DESERVE DEvelopment platform for Safe and Efficient

dRiVe
Dr Doppler resolution
EoD Employee On Duty
FMCW Frequency Modulated Continuous Wave
FRA Federal Railroad Administration
f s Sampling frequency
FSK Frequency Shift Keying
KA Knowledge Aided
OOPDA Observe, Orient, Predict, Decide, Act
Rr Range resolution
RCS Radar Cross Section
SDRadar Software Defined Radar
SLA Sense Learn Adapt
sn Sample number
SoC System on Chip
tm Sweep time

INTRODUCTION
Railroads have been one of the safest workplaces for the

Employees on Duty (EoD), due to constant monitoring, regu-
lations and employee trainings. The seven ‘class I’ railroads, in
conjunction with Federal Railroad Administration (FRA), have
researched and introduced regulations, novel methods of train-
ing their employees, efficient employee management, freights
and assets, etc. to provide a better and safer workplace envi-
ronment for their employees. The trend in reducing number of
fatalities and EoD deaths can be seen as the direct result of the
actions taken by the railroad industry. Even though the efforts
to make the workplace environment safer for EoDs directly in-
fluences how EoDs interact with a highly dynamic environment
such as railroads, the consequences of railroads being dynamic
environment cannot be ignored. Railroads consist of different
primary locations, where the majority of EoDs are stationed, in-
cluding main/branch lines and yards. The number of casualties
in main/branch lines and yards are significantly higher than all
the other locations, contributing to 35.1 and 26.4% of casualties
in between 2014-2017 [1, 2], respectively. On average, around
1450 occurrences in main/branch lines and 1100 occurrences of
deaths and fatal injuries in yards have been recorded in the FRA
database during the same period of time [1, 2]. The silver lining
in this trend is the change of statistics over time, which are on
average -3.3% for main/branch lines and -15% for yards. How-
ever, these numbers are still alarming. Specifically, deaths and
injuries have been recorded based on ‘49 CFR Part 225’, which

has detailed overview on accident reporting incidents, investiga-
tions and classifications [3]. In section 225.12, the “employee”
includes all the terms: employee on duty(class A), employee not
on duty, contractors and volunteers (class D). However, there are
accidents, which are reported based on non-trespassers (class E)
and trespassers involved in the event occurrence. Therefore, in
our paper we strictly use the term ‘personnel’ to include class A,
class D and class E persons in the railroad environment.

In our previous paper, we have shown how the dynamic envi-
ronment affects workplace and contributes to different hazardous
scenarios. We have also compared and identified railroad per-
sonnel incidents in terms of statistics and similar workplace en-
vironments [4, 5], i.e. construction. We have also identified the
workplace hazards specific to railroads, which are falls, slips,
trips, stumble and collision. In the FRA database the major-
ity of hazards are identified as slips and falls due to walk sur-
faces and weather conditions, which translates to almost 10%
of the total EoD fatalities [1, 2]. Collisions in different situ-
ations, i.e., driving, sitting, standing, etc., encompass almost
5% of the reported cases [1, 2]. Therefore it can be stated that
the workplace environment risks in railroads primarily revolve
around walk surfaces, fall hazards, weather conditions and fi-
nally the possibility of getting struck by objects. In both yard and
main/branch line environments, outdoor work conditions are af-
fected by dynamic weather conditions, ballast surfaces/spikes, ir-
regular surfaces, heavy moving equipment/vehicles, rolling stock
and freight. However, because of the dynamic, convoluted en-
vironment of yards and the mentioned hazards, yard engineers,
conductors, foremen and clerks face 6% of the casualties, which
is second-highest in terms of percentage of total number of ca-
sualties [2]. These are also the main causes of fatal casualties
in a workplace like the railroads. These causes of hazards can-
not be removed entirely, but regulated or prevented by extensive
training and passive monitoring. The fall and collision hazard
can be thus considered correlated to be one hazard influencing
the occurrence of another, along with weather conditions, which
negatively contributes to these events. We can also observe from
the database that the majority of the events (∼ 10%) happened
next to tracks or at their own workstations, which supports our
previous claim that regulations may prevent workers from com-
ing close to the tracks, while still not being able to eliminate
the danger from this dynamic convoluted environment, where the
multiplicity in dynamicity is overwhelming.

Through understanding the risks and challenges in protect-
ing the railroad workers resulting from our previous research,
we decided to select a sensor fusion method combining various
sensors such as vision sensors and RADAR, and embedding in-
telligence to be able to work autonomously in the yard.

In this context we proposed a Software Defined Radar
(SDRadar) based multi-personnel and rolling stock detection
and tracking solution as one component of this overall system.
The scope of selecting a radar-based solution is to provide a
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solution that is weather-proof and doesn’t suffer from limited
visibility. The radar being software-defined allows us to add
semi-cognition in the device to look at the environment and au-
tonomously decide the location and velocity of the assets present
in the vicinity. We have studied the range of the SDRadar and
its targets as objects based on their sizes, threats and priorities
for detection. The smart detection algorithm in the SDRadar
can change its parameters to accurately identify the personnel
present in the line-of-sight if there is a moving threat present.
The algorithm works like a feedback controller, which guaran-
tees efficient detection of multiple personnel through scanning
within observable range and then finding larger moving objects
moving towards or away from the personnel. We are presenting
initial field test results based on indoor and parking lot test en-
vironments. Indoor testing evaluates a cluttered environment at
limited scale, whereas parking lot testing focuses on a railyard-
comparable large-scale environment with personnel and vehicle
interactions.

RELATED WORKS
In general, radar has been used for detecting objects at dif-

ferent distances in both commercial and military domains for
decades. The advantage of radar being used as a sensor in an en-
vironment is in its robustness in different operating conditions.
Radar, unlike 2D-visual sensors (camera, stereo vision camera,
etc.) works in low-light visibility and different weather condi-
tions (rain, fog, etc.) [5]. These advantages over vision sensors
made it popular in various application scenarios, i.e. automo-
tive radar for autonomous driving [6,7], collision warning for air
traffic PARASOL [8], railroad crossing safety [9], blind-spot de-
tection and construction worker safety-alert system [10], obsta-
cle detection and individual status detection of objects in prox-
imity for collision warning [11], etc. The most popular appli-
cation scenario of consumer radar, thus excluding military and
air surveillance systems, are found in Advanced Driver Assis-
tance Systems (ADAS) to avoid potential collisions and acci-
dents. These radar systems range from narrow-band radar to
wide-band and ultra wide-band radar, including both long-range
and short-range radar. The majority of automotive cruise control
radar systems, starting with developments in the early 1970s, are
based on mmWave frequencies [7] for assisting drivers in detect-
ing blind spots, lane changes, braking cars ahead of them, etc.
Nowadays, radars are not only used in ADAS for collision warn-
ing and blind spot detection for large objects, but also detect-
ing smaller Radar Cross Section (RCS) objects such as pedestri-
ans [12]. Researchers also identified the severity of collisions
is significantly higher when heavy vehicles are involved [13].
The authors in [13], proposed DESERVE (DEvelopment plat-
form for Safe and Efficient dRiVe), which is a training method
using ADAS that might help drivers to better acquaint themselves
with roads and driving environments. This positive trend in au-

tomotive radar research and application is due to efficient semi-
conductor development in the present decade, when mmWave
radars are designed with CMOS transistor based System on Chip
(SoC). High speed transistors contributes towards lower power,
noise and better form factors [14]. Therefore, in higher-level de-
signs high detection resolution from the radars can be found with
low computational complexity. The extensive growth in automo-
tive radar design of small form factor and low power consump-
tion can thus be leveraged in other collision-prone dynamic en-
vironments too.

The radar research over the last decade also shifted towards
cognition-based radar systems [15] and provides a variety of op-
portunities towards solving complex environment problem where
clutter can eventually alleviate radar performance. In a complex
operating region, cognition allows the radar systems to optimize
signal processing for better target tracking and detection. The
major challenge in radar detection is in cluttered environments
when interference may stem from undesirable targets impeding
radar accuracy [16]. The main advantage of designing cogni-
tive radar systems is having feedback from the receiver to the
transmitter that makes the radar adaptive and able to focus on
primary targets without sacrificing performance detecting inter-
ferences or clutter. In this domain, knowledge-aided (KA) pro-
cessing or adaptive transmit (ATx) techniques use the processing
resources available to the radar [17] in the processing back end.
The method of cognition for sense-learn-adapt (SLA) approach
through observe, orient, predict, decide and act (OOPDA) can
be applied to radar-centric applications based on KA and ATx
for fully adaptive tracking and detection of objects [18]. There-
fore, there is a significant opportunity of research to use cogni-
tive radar in commercial domains, where clutter and dynamicity
make detection and tracking harder than in conventional environ-
ments.

THE PROBLEM STATEMENT
Railroad environments are complex and dynamic, and make

proper monitoring and training of railroad personnel both chal-
lenging and vital. An environment like a railyard is a large-scale
operating region distributed into different sub-operating regions.
Each sub-operating region has its own set of personnel and their
movement in the environment should be regulated or monitored.
Therefore determining the movement of assets and personnel in-
dividually in these regions is hard. A simple solution could be
installing a number of infrastructure sensors or vision sensors
within this environment to cover the entire region. However, the
sheer number of sensors to cover a large-scale environment and
finding suitable installation locations to avoid blind spots may
make this approach for detection and tracking of personnel in-
feasible. Even the distribution of sensors and installing apparatus
over assets need to follow particular set of guidelines [5]. There-
fore, we define the set of particular challenges as shown below,
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in order to clarify the research problem to the reader:

Dynamic environment
Railroad environments are dynamic, and this dynamicity

varies according to the primary locations. In main/branch lines,
the probability of collision, falls, slips or trips for the person-
nel is limited due to space constrained operation. However, due
to trespassers or any other non-personnel crossing or even ap-
proaching the tracks unrestricted, the number of casualties in-
creases. Furthermore, whenever the number of tracks on a line
increases the probability of collisions or falls increases signifi-
cantly as well. In a yard environment, numerous operations are
occurring simultaneously, predominantly in a scheduled and effi-
cient manner. Most of the yard operations are also autonomous.
A yard is a large-scale dynamic work environment, consisting
multiple tracks with moving or static freight, Hi-rails, trucks or
heavy vehicles near tracks for loading/unloading, rolling stock,
etc. All of these assets move in a constrained environment in a
semi-regulated manner. The personnel working in this environ-
ment have to work in a similar regulated and informed fashion
to avoid fatal situations. However, as mentioned before, regu-
lations may make workplace environments safer as a preventive
measure when there is a deterministic set of interactions occur-
ring, but they cannot address other factors such as human errors
resulting in workplace fatalities, especially when human errors
can propel a set of interactions towards the occurrence of a larger
accident in these dynamic environments. We show below how a
dynamic environment may interact with human errors,

One-to-One situations These are singular occurrence-
cases where one asset collides with another personnel or non-
personnel such as,

where a trespasser may move across the tracks to trigger a
collision fatality or move along the tracks towards or farther
from the freight/rolling stock,
or where a yard engineer inspecting a track or freight may
fall or stumble over the track triggering a fatality or ‘near-
miss’ event.

Many-to-One situations Cases where multiple-asset
movements make any mobility by the personnel/non-personnel
dangerous. These situations are highly unlikely but most danger-
ous for the personnel. Avoiding this kind of event without proper
support may not be possible.

In yard environments, train and railcar movement is often
controlled remotely by remote control operators or via humps in
hump yards. Therefore, in scenarios like this, the sudden stop of
these moving trains or railcars is not possible in a timely fash-
ion. Similarly, on mainlines trains moving at 55 mph may very
well take over a mile to come to a complete stop. Therefore,

emergency scenarios should be handled and detected when the
train is farther than one and half miles away from a potential in-
cident site. In both cases, for yards and main/branch lines, the
dynamicity is different. Hence, the measures for detecting these
events must be carefully chosen based on the constraints we have
discussed.

Detection Measures
Detection and tracking an event of a near-fatal situation is

challenging in dynamic environments. The environment is clut-
tered and distributed, which introduces several blind spots for
line-of-sight detections. More often, the distributed environ-
ments are monitored with distributed sensors creating a sensor
network. However, increasing the number of sensors may in-
crease reliability in detection, but that reliability comes at the
cost of separate maintenance of a sensor network. A distributed
sensor network on average can operate at 60% of its distribution,
which does not fulfill the required reliability guarantee. Even
when ignoring the reliability issue in this case, the number of
the sensors to monitor a large-scale system can be huge and may
not operate as standalone sensors in different cases [5]. There-
fore, distributed sensor networks should employ sensor fusion.
Distributed sensors cannot detect or identify the proximity of as-
sets and personnels concurrently without actually putting sensors
on-board assets or personnel. Supplying power to this sensor net-
work to continuously work year-round without fail is also chal-
lenging. Moreover, if we consider the adverse effect of weather
on the sensors, the robust outdoor deployments for both main-
line/branch and yards seem infeasible using distributed sensor
networks.

A plausible sensor network solution may employ vision sen-
sors. The research in object detection, classification and tracking
with vision sensors is in a mature state. There is a multitude of
research going on to detect falls, trips, and gait through vision
sensors. Therefore, detecting working posture, classifying per-
sonnel and trespassers independently, classifying assets, as well
as detecting proximity and risk level through vision sensors can
be be achieved using vision sensors. However, the primary re-
quirement for a work environment such as the railroads is robust-
ness rather than trivial detection and classification. For one, the
range of vision sensors is limited. They can’t operate in low-light
conditions. Dirt, fog, snow and other environmental effects often
render vision sensors virtually blind. Therefore, robust perfor-
mance from vision sensors cannot be achieved in an environment
where these weather and environmental conditions may occur.

Blind Spots
For any collision warning system blind spot detection is one

of the hardest challenges. Vision-based sensors are line-of-sight
sensors and fail to detect objects that are not in their line-of-
sight. For example, a person hidden behind a railcar cannot be
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detected using a vision sensor. Even with height adjustment it is
impossible to detect such a ‘hidden object’. Many a times tres-
passers may stay hidden behind an object or a person finds itself
obstructed by a large object, thus avoiding the vision sensor’s
surveillance. We identify this as one of the most challenging
problems in designing collision warning systems, because even
planned and optimized distribution of sensors may not find these
hidden objects.

Finally, based on the above findings we can propose a sum-
marized problem statement for this context that we are attempt-
ing to solve as:

multi-object, multi-cross section object detection and classi-
fication in a cluttered environment,
individual accurate and low-latency range and velocity de-
tection,
prioritized detection and tracking of personnel and non-
personnel,
rapid person-to-object proximity determination for risk eval-
uation and neighbor support,
clutter recognition and adaptable sensing of environment
detection of ‘hidden objects’

USING SOFTWARE-DEFINED RADAR
Virtually the entire functionality of Software-Defined Radar

(SDRadar), similar to Software Defined Radio, can be controlled
by its software. That means, waveforms, filtering, clutter can-
cellation, sample points, sweep time, bandwidth, etc. all can
be changed on the fly by software according to specific require-
ments and adapting to time-varying conditions. Though radars
have been used for detecting targets for a long time, software-
defined radars are a newer addition to the family. SDRadar sys-
tems provide clear advantage through cost reduction and also in-
herent flexibility of signal generation and signal processing. It
often is also possible to run the software locally or remotely in
order to control the SDRadar for target distance and velocity de-
tection. The hardware we utilize for our presented method is
Ancortek’s SDR-KIT-580AD [19]. The SDRadar kit operates
using a 5V power supply, and utilizing separate transmitting and
receiving antennas. Figure. 1, shows the in-house kit we have in
the lab for indoor and field testing. It also is equipped with the
SDR-PM 402 processor module with the ability to integrate C-
band frequencies (4-8 GHz). The center frequency of the module
is in the ISM band of 5.725-5.875 GHz. It has waveform support
for FMCW, FSK and CW waveforms, which we will be consid-
ering as our waveform library [20]. It can support wide band
scenarios for increased range resolution and customized band-
width may be expanded to 800 MHz for ultra-wide band scenar-
ios. Narrow-band waveforms can be used to detect objects at
large distances. Table 1 shows the summary of features available
in the SDRadar [19].

FIGURE 1: ANCORTEK SDR-KIT 580AD AND EXPERI-
MENTAL SETUP

The Reason for using SDRadar
As we previously discussed, radar systems are robust,

weather-independent, consume relatively little power and have
been extensively tested in different safety-constrained applica-
tion scenarios. Another key observation is that when it comes to
radar, blind spot detection can be done easily, because it captures
the reflections through multipath. Therefore, we summarize the
reason behind using radar systems as i) providing a large cov-
erage area, ii) consumes relatively little power, iii) is robust in
different weather and environmental conditions, iv) accurately
detects and tracks large objects and multiple radar cross section
objects with clear Doppler separation, v) detects blind spots and
hidden objects, vi) detects objects in low visibility and harsh
operating conditions. The reason behind selecting SDRadar
over conventional radar is the ability to control the radar system
through software and obtain optimal control over the parame-
ters. The problem with highly cluttered environments is inter-
ference and shadow detection of lower radar cross section ob-
jects. Therefore even with marginal Doppler separation between
two objects the detection of lower radar cross-sectional objects
may not be possible. Even though wideband and ultra-wideband
radar systems provide better target detection at shorter range, nar-
rowband signals provide better target detection at longer range
with Frequency Modulated Continuous Wave (FMCW). In our
SDR-kit, pulsed waveform support is not available currently, so
we instead focused on the use of continuous-wave waveforms.
Due to FMCW’s range resolution being inversely proportional
to bandwidth, increasing bandwidth provides better range res-
olution. The power draw in wideband and ultra-wideband is
also lower than narrowband signals. Therefore, we can exploit
these varying characteristics of CW radars, changing different
wavelengths, sweep time and sometimes waveforms to scan the
operating region to find and detect people amid clutter. Using
SDRadar we can achieve not only flexibility in processing radar
information, but also it is possible to learn about the environ-
ment and adaptively scan the environment prioritizing personnel
in vicinity.
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TABLE 1: FEATURES OF ANCORTEK SDR580AD.

Feature min. typ. max. units

Frequency range 5.6 6.0 GHz

Expandable frequency range 5.2 6.0 GHz

Bandwidth 50 400 MHz

Extended bandwidth 50 800 MHz

Tune voltage 0 5 V

Power output 18 19 20 dBm

Conversion gain over Rx channel 26 28 30 dB

Maximum input power 10 dBm

Supply voltage 4.75 5 5.25 V

Supply current 650 670 700 mA

Operating temperature -40 85 C0

Image rejection rate 20 30 dB

Theoretical Analysis of Utilizing SDRadar
Analyzing the problem statement mathematically we can de-

termine that through adapting a limited number of parameters
we can achieve optimum results: i) range resolution, ii) clutter,
iii) Doppler resolution at large distances > 100 m, iv) range of
the target object and range of potential collision risk if within
range. The important parameter to work with in this context is
the clutter. Conventional,y clutter cancellation can be performed
in software averaging over some time periods without the target
object. However this does not provide sufficient clutter infor-
mation in a dynamic environment. Clutter cancellation needs to
store information regarding dynamically changing clutter or in-
terferences present in time-variant scenarios such that even in
congested and dynamic environments target objects can be de-
tected and tracked. Therefore, for ease of understanding we will
analyze the SDRadar performance with FMCW. The parameters
in FMCW that are controllable are bandwidth, sample number
( f s×tm), where, f s is sampling frequency and tm is sweep time.
Therefore, changing the sample number and sweep time we can
change the sampling frequency. Changing these basic param-
eters provides us the opportunity to change the range/Doppler
resolution and range limits. The range resolution can be calcu-
lated by Rr = c× tm

2×bw , where c is the speed of electro-magnetic
wave and bw is the available bandwidth. The Doppler resolution
can be calculated by Dr =

c
f c , where f c is the center frequency

of the radar. From this we can conclude easily that the Doppler
resolution of the radar is constant or cannot be changed through
software. However, as we can change the radar sample number,
sweep time, and bandwidth on the fly we can instead adapt the
range resolution to achieve better accuracy in multiple-target de-
tection and tracking. The maximum range can be found simply
as f s/2×Rr.

FIGURE 2: FMCW WAVEFORM AND ITS SPECTROGRAM

Outdoor Experimentation with SDRadar
As the SDRadar is very easy to use in indoor and outdoor

scenarios we have conducted basic field tests with the radar to
check if the SDRadar is fully functional and shows merit of
detecting point targets (with Radar Cross Section of 1, i.e, hu-
man target) in difficult cluttered scenarios. To test these sce-
narios we have used the highest range resolution in the radar,
e.g., bw = 400 MHz, tm = 0.5 ms, SN = 128, where SN is
the sample number. The range resolution we can achieve is in
millimeters and the maximum range can be ∼ 24 m. This is
not an ideal test scenario for outdoor testing, but for ground
reflections and understanding in later clutter cancellation algo-
rithms this scenario provides us the opportunity to study point
targets and their closely correlated movements. Theoretically,
the radar can be tested for a maximum range of ∼ 3.1 km when,
bw = 100 MHz, SN = 1024, tm = 0.5 ms, with decent range res-
olution. The range resolution is useful for separating two targets
individually. In our case, due to wideband bandwidth availabil-
ity, the cases of target differentiation problem should not occur.
We have created a random clutter environment in outdoor 24m
region, and three scenarios: i) two personnel facing in the same
direction and a separation between them of ∼ 18 m, ii) two per-
sonnel at 8 m and 24 m, iii) car and two personnel respectively at
3m, 10m and 15 m. Figure 4, shows the field test spectrogram of
the range-Doppler plot. From the plots it can be seen that there
was not a lot of movement observed due to static placement of the
participants. We had to use clutter cancellation methods to bring
out the participant point and larger objects clearly to show them
in plots. As we have used FMCW waveform for both outdoor
and indoor scenarios, the pulse and its spectrogram are shown in
Fig. 2.

For detailed understanding of the SDRadar and the software
defined by our lab, Fig. 3 (i) shows the software and Fig.3 (ii)
- (iii) show some more outdoor scenarios, where the location of
cars and personnels are shown in the figure.
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FIGURE 3: FIELD TESTING - (i) GUI TO CONTROL THE PARAMETERS, (ii) CAR AND PEDESTRIAN PARALLEL MODE-
MENT, (iii) MULTIPLE PEDESTRIAN MOVEMENT

Indoor Experimentation with SDRadar
Indoor experimentation with radars are useful to repli-

cate/emulate a large-scale cluttered environment with less dy-
namicity at a smaller scale. The most challenging scenarios can
be obtained with multi-path and reflections. A generic approach
for clutter cancellation for radars can be achieved through first
measuring radar returns of the environment without the presence
of the target object, to effectively baseline the environment. Then
during real time observations, when the target is present we can
remove the cluttered scene from the observations, thus depicting
a clear and better range estimation. Figure 5 illustrates the range
estimation using a waterfall plot where observing the clutter and
clutter cancellation method shows better estimated range. In the
figure the target is approaching and receding from the radar line-
of-sight for a short period of time.

PROPOSED METHODOLODY
We have discussed the capabilities of SDRadar and the soft-

ware we have designed to locate personnel and track them indi-
vidually and separately from the cluttered dynamic environment.
Thus far the parameters have been controlled manually in these
tests. However, the entire process of adapting the parameters to
detect and track personnels should instead be automated. This
enables the fully automatic detection and tracking, in each case
optimally balancing performance and precision. The only prac-
tical way to control this operation is to design and implement a
control system and define input, output and disturbances. As we
have seen before, the input can be a multi input system where
we define a derived input as range resolution. The disturbances
should be the clutter and output is the detected range. This range
estimate feeds back into the controller to refine this achieved out-
put result. Therefore, we designed Algorithm 1, shown below, to
run and control this process:

Now, according to Algorithm 1, this function is a recursive

Algorithm 1: ALGORITHM FOR THE CONTROLLER

1 function detectRange;
Input : rangeResolution = ε

Output: detectedRange
2 if targetDetected then
3 detectedRange← fmcw range doppler function();
4 rangeResolution ↓ ε;
5 function detectRange()
6 else
7 rangeResolution ↑ ε;
8 end

controller and it is based on range resolution. Based on the de-
sired range resolution we then can adjust bandwidth, sweep time
and sample number for FMCW. We can run different estimation
techniques on the radar systems to determine accurately the loca-
tion of the target. In the next section, we will show the simulation
results for our proposed methodology.

SIMULATION RESULTS
The simulation of the above algorithm clearly shows that

we can achieve better estimation of range by adapting range
resolution and sweep time. In our simulation we have used
exact parameters for antenna gain (12 dBi), noise figure (3.4)
and receiver gain (28 dB), as specified in the Ancortek 580AD
datasheet. We have created a simulated scenario for a test study
where two targets of different radar cross section are present.
One target, which is a car at 50 m distance and at a speed of
20 km/h is moving towards the target, whereas another target a
personnel is moving at a speed of 6 km/h from a distance of 30
m. We have simulated the scenario to test the scope our proposed
methodology. The simulation observations have been chosen as
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(i) (ii) (iii)

FIGURE 4: RANGE DOPPLER PLOT OF SCENARIOS (i-iii) FROM LEFT

(i) (ii)

FIGURE 5: INDOOR SDRADAR OBSERVATION WITHOUT
AND WITH CLUTTER CANCELLATION

shown in Table 2.
Therefore, in Fig. 6 we can see that velocity estimation ac-

curacy for multiple targets fluctuates. As the velocity of second
target can not be estimated precisely, the accuracy of the first
target remains constant for three of the observations. This phe-
nomenon is the result of using FMCW sawtooth. However, Uti-
lizing triangular FM or FSK waveforms solves this problem, and
this can easily be seen through SDRadar’s settings control. Using

TABLE 2: SIMULATION PARAMETERS

Parameter value

Maximum Range 50, 60, 70, 80, 100 m

Sweep Time 0.1, 0.5, 1, 2, 4 ms

Range Resolution 2, 1, 0.5, 0.2, 0.1 m

our proposed controller design to scan for pedestrian and adap-
tively control parameters, we observe an interesting trend in the
resulting plots: During range estimation it can be seen that the
best estimation can be found when the radar maximum range is
close to the distance to the primary target object itself, indepen-
dent of sweep time and range resolution.

CONCLUSIONS
The scope of this paper is to identify the potential haz-

ardous challenges railyard personnel face, and to conceptualize
and evaluate a solution that improves worker safety by provid-
ing early alerting without encumbering the personnel. The dis-
cussed solution is based on Software-Defined Radar, which is
a unique solution to the problem for locating personnel within
the yard and along mainline tracks, without manual interac-
tions and frequent maintenance. To show the merit of the pro-
posed infrastructure-based sensor solution over others we have

8 Copyright © 2018 ASME



FIGURE 6: RANGE AND VELOCITY ESTIMATION

field-tested Ancortek’s SDR580AD in different scenarios and ob-
tained results that demonstrate the feasibility of the proposed ap-
proach. We could obtain accurate results and insights into the
most promising application conditions for using the radar under
most difficult cluttered and dynamic environments. According to
our research studies, radar can be used in yards and mainline en-
vironments as a temporary or permanent installation for person-
nel safety and management. The high resolution detection meth-
ods show us that the results obtained can be further analyzed for
detailed clutter analysis and differentiation between objects of
different and similar radar cross section. Additionally, we have
shown the capabilities of the designed software and have pro-
posed a controller for cognition to adapt operational parameters
within the software. The simulation results confirm the logic be-
hind designing the controller itself. Our future research direction
is to study enhanced cognition for radar detection and tracking
for autonomous operation.
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