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ABSTRACT 
The importance of steel cleanliness for the performance of 
tapered roller bearings has been clearly established and has 
led to on-going improvements in steel production methods. The 
presence of non-metallic impurities within the steel can result 
in hard/brittle inclusions that may serve as initiation sites for 
damage due to sub-surface rolling contact fatigue (RCF) if the 
inclusions lie within the near-race of the bearing components 
due to the high mechanical stress present. Current inspection 
standards define steel cleanliness with respect to bulk inclusion 
morphology, which limits inspection to a small area that may or 
may not be representative of the entire steel heat. In this 
presentation, ultrasonic surface wave methods are described 
for detecting subsurface inclusions directly on finished bearing 
inner and outer rings. We expand on our previous work to 
exploit the different inspection depths that can be achieved with 
different measurement frequencies. The impact of the different 
inspection depths is quantified through simulated service life 
testing with heavy axle loading conditions. For this study, 
bearing components were first subjected to ultrasonic surface 
wave testing at three different frequencies to identify near-race 
inclusions. The simulated service life testing was then used to 
assess the onset and propagation of RCF failure. RCF spall 
initiations correlated highly with the positions identified by the 
ultrasonic inspections suggesting that this approach has a 
predictive potential. However, additional research is needed to 
establish the specific criteria needed for such predictions with 
respect to the inclusion location along the race, the depth from 
the race surface, the inclusion morphology and the inclusion 
mechanical properties. This work is anticipated to improve the 
understanding of RCF damage initiation which will lead a 
higher level of safety for railroad operations. 

INTRODUCTION 
With the increase in service loads of railcars aimed to 

improve the efficiency of the transport industry, the desired 
performance of railway tapered roller bearing increases 
continuously. One of the most important aspects related to the 
performance is bearing steel cleanliness, which has been clearly 
established [1-4]. Bearing steel cleanliness has led to on-going 
improvements in steel production methods both in design and 
quality control, such as new standards to measure the non-
metallic impurity content in a particular heat of a steel supplier 
[3-5]. The presence of non-metallic impurities within the steel 
can result in hard/brittle inclusions that may serve as initiation 
sites for damage due to sub-surface rolling contact fatigue 
(RCF) if the inclusions lie within the near-race of the bearing 
components due to the high mechanical stress present [3,4, 6]. 
The critical region of bearing components has been estimated 
as several hundred micrometers. 

 Current inspection standards for inspection in the critical 
region of rail components include methods based on bulk 
inclusion morphology, BS-EN 12080 [7], bulk material 
ultrasonic scanning, and so on. Even if the exact chemical 
composition of the inclusion is known, the existing inspection 
standards with respect to bulk inclusion morphology are limited 
to a small inspection area that may or may not be representative 
of the entire steel heat. In BS-EN 12080, an ultrasonic 
longitudinal wave is generated with an incident normal 
transducer configuration and the reduced echo reflected from 
the back surface of the sample is monitored. The size of the 
drilled flat bottomed hole (FBH) on the surface of standard 
ranges from 0.5 mm to 1 mm in both diameter and depth, which 
is much larger than the depth of the critical region such that it is 
reasonable to question if important inclusions are missed. Bulk 
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inclusions that are detected (location F in Figure 7) lead to a 
spall while other inclusions (e.g., location D) do not. Such 
differences are thought to be due to the intrinsic characteristics 
of the inclusion, which is one of the topics of future work. 
Therefore, future research will focus on the establishment of 
specific criteria needed for such predictions with respect to the 
inclusion location along the race, the depth from the race 
surface, the inclusion morphology and the inclusion mechanical 
properties. Although the work here is focused on tapered roller 
bearings, it is anticipated that this study can improve the 
understanding of RCF damage initiation for other applications 
within railroad operation such as wheel-rail contact. 
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