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The classical problem of a rotating rigid body

The classical Euler equation of a rotating rigid body:

dM

dt
= M× ω

where M,ω ∈ R3 and Mj =
∑3

k=1 Ijkωk (Ijk - inertia tensor, symmetric positive
definite)
In components

dMi

dt
=

3∑
j,k=1

εijkMjωk

εijk is the Levi-Civita completely skew-symmetric tensor.
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Lie algebra interpretation

εijk defines the structure constants for the Lie algebra so(3)

Picture (Poincare-Arnold):

Let G be a Lie group with the Lie algebra g. g acts on itself via the adjoint
representation ad .

This action lifts to the dual g∗, and one gets the co-adjoint representation
ad∗ on the dual.

Suppose g is equipped with an inner product. The inner product induces an
isomorphism A : g→ g∗

Then Euler’s equation of the rigid body can be interpreted as

dm

dt
= ad∗

A−1mm, m ∈ g∗

For the rigid body: G = SO(3),A = I (inertia tensor)
dM
dt

= −I−1M×M
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Lie algebra of Diff +(S1)

The natural geometric way of interpreting elements u ∈ diff(S1) is to view them
as vector fields u ∂x , and the dual space diff∗(S1) as the space of quadratic

differentials Ω⊗
2

, with the diffeomorphism-invariant pairing

〈mdx2, u ∂x〉 =

∫
S1

mu dx .

The Lie bracket on g = diff(S1) is the Lie bracket of vector fields,

[u ∂x , v ∂x ] = (uvx − uxv) ∂x ,
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and hence, if we integrate by parts,

〈ad∗u ∂x (mdx2), v ∂x〉 = −〈mdx2, [u ∂x , v ∂x ]〉

= −
∫
S1

m (uvx − uxv) dx

=

∫
S1

(
(um)x + uxm

)
v dx ,

so

ad∗
u ∂x (m dx2) =

(
(um)x + uxm

)
dx2
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A priori there is of course no relation between m and u. However, if we equip the
Lie algebra diff(S1) with the H1 inner product

(u ∂x , v ∂x) =

∫
S1

(
uv + uxvx) dx ,

then after one integration by parts the inner product can be written

(u ∂x , v ∂x) =

∫
S1

(
u − uxx

)
v dx = 〈Au dx2, v∂x〉,

with A = 1− ∂2x . In other words we have a map

u 7→ m = Au = u − uxx
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Euler’s equation on Diff +(S1) (G. Misiolek 1998)

mt = (mu)x + uxm, where m = u − uxx .

This equation was proposed by Camassa and Holm in 1993 as a model of
one-dimensional dispersive waves in shallow water.
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Lax integrability

In so(3) we have the equation Mt = [ω,M]. One can construct a symmetric
matrix J out of the tensor I so that the relation between M and ω takes the form

M = ωJ + Jω,

Then (Manakov) the Lax equation

d

dt
(M + zJ2) = [ω + zJ,M + zJ2]

is equivalent to the Euler’s equation of the rigid body. This Lax equation can be
viewed as a compatibility condition

(M + zJ2)Ψ = λΨ eigenvalue problem

Ψt = (ω + zJ)Ψ deformation
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Lax integrability of the CH equation Consider

(−∂2x +
1

4
)ψ =

λ

2
mψ eigenvalue problem

ψt =
1

2
(

1

λ
+ ux)ψ − (

1

λ
+ u)ψ deformation equation

The first miracle: the CH and Euler’s equation of the rigid
body are both Lax integrable.
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The second miracle: peaked solitons (peakons)
CH admits weak solutions (with finite H1-norm) in the form of peak-shaped
travelling waves,

u(x , t) = c e−|x−ct|, c ∈ R,

known as peakons (peaked solitons), on account of their obviously peaked shape
together with the fact that they can also be combined via superposition to form
N-peakon or multipeakon solutions of the form

u(x , t) =
N∑

k=1

mk(t) e−|x−xk (t)|,

or, since m = (1− ∂2x )u

m(x , t) = 2
N∑

k=1

mk(t) δ
(
x − xk(t)

)
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Peakon equations

ẋk = u(xk),

ṁk = −mk
〈
ux
〉
(xk),

1 ≤ k ≤ N
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Figure: An example of a three-peakon solution of the Camassa–Holm equation . The
graph of u(x , t) =

∑3
k=1 mk(t) e

−|x−xk (t)| is plotted for x ∈ [−15, 15] and t ∈ [−10, 10]
In this example, all amplitudes mk are positive, so it is a pure peakon solution (i.e., there
are no antipeakons with negative mk).
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Figure: Positions x = xk(t) of the three individual peakons in the solution from Figure 1,
with the dashed rectangle indicating the region shown there. Note that the ordering
x1(t) < x2(t) < x3(t) is preserved for all t, and that the peakons asymptotically (as
t → ±∞) move in straight lines in the (x , t)-plane, like solitary travelling waves.
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The string connection
R. Beals, D.Sattinger, J.S.

To start revealing that connection, (for now t is frozen) we make a Liouville
transformation, i.e., a change of dependent and independent variables with the
purpose of eliminating the constant term − 1

4 in the differential operator ∂2x − 1
4

appearing in the first Lax equation.(
∂2x − 1

4

)
ψ(x) = − 1

2λm(x)ψ(x), x ∈ R.
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Now let

y = tanh(x/2), ψ(x) =
φ(y)√
1− y2

.

For smooth functions it is easily verified using the chain rule that the Liouville
transformation turns the x-Lax operator into

−∂2yφ(y) = λ g(y)φ(y), −1 < y < 1,

where
1
2 (1− y2)2g(y) = m(x).
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When m = 2
∑N

k=1 mkδ
(
x − xk)

)
we obtain the discrete measure g on the interval

(−1, 1), namely

g(y) =
N∑

k=1

gk δ(y − yk), gk =
2mk

1− y2
k

,

where (of course)
yk = tanh(xk/2).

This situation corresponds to a discrete string:
an idealized object consisting of point masses of weight gk at the
positions yk , connected by weightless string.
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Next we define the so-called Weyl function of the discrete string:

W (λ) =
φy (1;λ)

φ(1;λ)
.

Clearly, this is a rational function with simple poles at the eigenvalues λ1, . . . , λN .
It turns out to be somewhat more convenient to work with the modified Weyl
function ω(λ) = W (λ)/λ, so that ω(λ) = O(1/λ) as λ→∞. This modified Weyl
function has an additional simple pole at λ = λ0 = 0 with residue
W (0) = 1/2 = a0; denoting the residues at the other poles by ak , the partial
fractions decomposition of ω is

ω(λ) =
W (λ)

λ
=

1/2

λ
+

N∑
k=1

ak
λ− λk

=
N∑

k=0

ak
λ− λk

.
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The following Stieltjes continued fraction expansion holds:

ω(λ) =
1

λ lN +
1

−gN +
1

λ lN−1 +
1

. . .
+

1

−g1 +
1

λ l0

.

distances between the masses lj = yj+1 − yj
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We can recover the coefficients of the continued fractions by studying
approximations problems. A typical example (the diagonal Padé)

Qr (λ)ω(λ)− Pr (λ) = O

(
1

λr+1

)
The polynomials Qr (λ) and Pr (λ) (of degree r and r − 1, respectively, and with
Q(0) = 1) are uniquely determined by this condition. In fact Qr determines Pr ,
and Qr is computable using the moments of the measure α.
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Let

αn =

∫
zn dα(z) =

N∑
k=0

λnk ak

be the nth moment of the spectral measure α. Then, using Cramer’s rule, we
obtain

Qr (λ) =

∣∣∣∣∣∣∣∣∣∣∣

1 λ λ2 . . . λr

α0 α1 α2 . . . αr

α1 α2 α3 . . . αr+1

...
...

...
...

...
αr−1 αr αr+1 . . . α2r−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
α1 α2 . . . αr

α2 α3 . . . αr+1

...
...

...
...

αr αr+1 . . . α2r−1

∣∣∣∣∣∣∣∣∣

.
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CH induced Isospectral Deformation

The CH equation induces an isospectral deformation of the string with Dirichlet
boundary conditions; as time passes, the mass distribution of the string changes,
but its Dirichlet spectrum remains the same. More precisely, if we split

α =
1

2
δ0 +

N∑
k=1

akδλk

and set

α̂ :=
N∑

k=1

akδλk
.

Then the CH flow on the string side reads

α(t) =
1

2
δ0 + e

t
λ α̂(0).
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Why is CH so special mathematically?

JS: CH is an isospectral deformation of an inhomogenous string. The connection
to the string is, in my opinion, the crux of the matter!

Suppose we are given an arbitrary Hilbert space H (finite dimensional or infinite
dimensional) and a self-adjoint operator A with positive, simple spectrum. Then A
can be realized as a boundary value problem for an inhomogeneous string. This
was proven by Krein around 1960.

If H is finite dimensional the corresponding string is a discrete string; we are in
the peakon sector.

J. Szmigielski, University of Saskatchewan, Saskatoon, SK, Canada (Saskatoon, Canada)On the interplay between Approximation Theory, Inverse Problems, and non-smooth solitons.28 October 2022 22 / 48



The Peakon Land (joint work with H. Lundmark)

By now (2022) we know a large number of peakon-bearing equations. The most
popular other than CH are perhaps: the Degasperis-Processi equation

mt + (um)x + 2uxm = 0, m = u − uxx

and the V. Novikov equation

mt + ((um)x + 2uxm)u = 0, m = u − uxx .
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The DP equation (after another Liouville transformation) is an isospectral
deformation of the cubic string

−∂3yϕ(y) = λg(y)ϕ(y), ϕ(−1) = ϕy (−1) = 0 = ϕ(1).

This is a non-selfadjoint problem, but for positive m, and thus g , the
spectrum is positive and simple!!!
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NV (with H. Lundmark and A. Hone)

NV is an isospectral deformation of the dual cubic string (after a Liouville
transformation)

∂

∂y

ϕ1

ϕ2

ϕ3

 =

 0 g(y) 0
0 0 g(y)
−λ 0 0

ϕ1

ϕ2

ϕ3

 , ϕ2(−1) = ϕ3(−1) = 0 = φ3(1).

Again, this is a non-selfadjoint problem, but for positive g the spectrum is positive
and simple.
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Dual strings

Roughly, if the original discrete string (or discrete cubic string) is characterized by
distances {lj} between the masses, and the masses {gj}, then for the dual string
(dual cubic string) the new distances are given by {gj} and the new masses are
{lj}. In other words

lj ↔ gj

In this sense the DP and NV are in duality for positive measures (for peakons,
no mixed peakons-antipeakons).
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Approximation problems

For the cubic string there are two Weyl functions W (λ) and Z (λ), and solving

the inverse problem for the cubic string amounts to solving the following

Hermite-Padé approximation:

Q(λ)W (λ)− P(λ) = O(1), Q(λ)Z (λ)− P̂(λ) = O(1)

Q(λ)Z (−λ)− P(λ)W (−λ) + P̂(λ) = O(λ−r ),

deg Q(λ) = deg P̂(λ) = r − 1,

P(0) = 1, P̂(0) = 0.
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Cauchy biorthogonal polynomials (with M. Bertola and M.
Gekhtman)

The solution to these approximation problems can be written in terms of an
interesting class of biorthogonal polynomials (Cauchy biorthogonal polynomials)

Definition
Let α and β be two positive measures with support inside R+. Then the family of
biorthogonal polynomials {qn(x), pn(x), n ∈ N} satisfies

〈qm, pn〉 =

∫
R2
+

qm(x)pn(y)

x + y
dα(x)dβ(y) = δmn

DP: α(x) = δ(x) +
∑N

k=1 akδ(x − λk), β(x) = xα(x),

NV: α(x) =
∑N

k=1 akδ(x − λk), β(x) = α(x).
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The spectra (in the pure peakon cases) is positive and
simple

The cubic string and the dual cubic string are not self-adjoint but still have

positive simple spectra. Why?

The cubic string and the dual cubic string are
non-selfadjoint oscillatory systems in the sense of
Gantmakher and Krein
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NV2; joint work with X. Chang

We consider the system (introduced by Hongmin Li in 2019)

mt + (uvm)x + uxvm = 0,

nt + (uvn)x + uvxn = 0,

m = u − uxx , n = v − vxx .

Then

u =
N∑
j=1

mje
−|x−xj |, v =

N∑
j=1

nje
−|x−xj |,

and the equations of motion for peakons read:

ẋj = u(xj)v(xj),

ṁj = −mj〈ux〉(xj)v(xj), ṅj = −nj〈vx〉(xj)u(xj).
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BVP for NV2

We consider, following Hongmin Li,

Dx

ψ1

ψ2

ψ3

 =

 0 zm∗ 1
02×1 02×2 zm

1 01×2 0

ψ1

ψ2

ψ3


where ψ1, ψ3 are scalar quantities (∈ M1,1) , ψ2 ∈ M2,1,

m∗ =
[
n m

]
m =

[
m
n

]
,

and z ∈ C is a spectral parameter.
The admissible boundary conditions are :

ψ3(−∞) = 0, ψ2(−∞) = 02×1, and ψ3(+∞) = 0.
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Peakon Sector

When the measures are finite and discrete we will write

m∗ = 2
N∑
j=1

m∗j δxj , m = 2
N∑
j=1

mjδxj ,

m∗j = [njmj ], mj =

[
mj

nj

]
.

J. Szmigielski, University of Saskatchewan, Saskatoon, SK, Canada (Saskatoon, Canada)On the interplay between Approximation Theory, Inverse Problems, and non-smooth solitons.28 October 2022 32 / 48



Spectrum
First step: Set

l = −z2.
For the case of the finite discrete measure given we obtain a matrix eigenvalue
problem for the components of

〈
ψ2

〉
. Let us define

Ψ =


〈
ψ2

〉
(x1)〈

ψ2

〉
(x2)

...〈
ψ2

〉
(xN)

 ∈ M2N,1,

P =


m1 02×1 02×1 . . . 02×1

02×1 m2 02×1 . . . 02×1
... . . . . . . . . . 02×1

02×1 02×1 . . . . . . mN

 ∈ M2N,N
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E =


1 e−|x1−x2| . . . e−|x1−xN |

e−|x2−x1| 1 . . . e−|x2−xN |

...
...

...
...

e−|xN−x1| e−|xN−x2| . . . 1

 ∈ MN,N ,

T =


1 0 . . . 0 0
2 1 0 . . . 0
...

...
... 1 0

2 2 2 . . . 1

 ∈ MN,N ,
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Proposition

The column matrix Ψ ∈ M2N,1 solves the eigenvalue problem

Ψ = λ
[
(T ⊗ 12)PEP∗

]
Ψ.

Proposition

1 the spectrum of the original boundary value problem is given by the zeros of
A(λ) (with the caveat that λ = −z2).

2 A(λ) is time invariant.

The matrix
[
(T ⊗ 12)P∗EP

]
∈ M2N,2N generalizes the matrix TPEP ∈ MN,N

where P = diag(m1,m2, . . . ,mN) ∈ MN,N , occurring in the treatment of the
peakon problem for the NV equation by Hone, Lundmark and JS.
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The matrix (T ⊗ 12)PEP∗ is not oscillatory (unlike in the NV case). It is very
hard to determine the spectrum.

Since the problem is isospectral perhaps we can evolve (T ⊗ 12)PEPσ

to a time t0 at which it becomes simple?

1 First idea: look at

E =


1 e−|x1−x2| . . . e−|x1−xN |

e−|x2−x1| 1 . . . e−|x2−xN |

...
...

...
...

e−|xN−x1| e−|xN−x2| . . . 1

 ∈ MN,N ,

2 Perhaps we can “ kill off” all those exponentials? Then E becomes the
identity matrix.
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Can we prove that |xi − xj | → ∞ if i 6= j at some time t0?

3 NV2 peakons scatter, i.e. |xi − xj | → ∞ if i 6= j and t →∞.

4 you need to prove global existence of peakon flows (for postive measures)

5 if peakons scatter then asymptotically they are free particles, i.e.

xj(t) = vj t + O(1),

and v1 < v2 < · · · < vN
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6 Asymptotically,

xj(t) = mj(∞)nj(∞)t + O(1), t →∞

7 The eigenvalues of the eigenvalue problem are:

λj =
1

2mj(∞)nj(∞)
, 1 ≤ j ≤ N.

In particular, all eigenvalues are positive and simple.
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A beam problem; joint work with R. Beals

D2
x [rD2

xφ] = λ2ρφ, −1 < x < 1

Lemma (R. Beals and J.S)

Set η = 1/r . Then the beam problem is equivalent to

D2
x Φ = λMΦ, M =

[
0 η
ρ 0

]
,−1 < x < 1

The Euler beam is a “string” with an internal structure. (matrix string)
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Since the space of initial conditions is 4 dimensional, putting boundary conditions
amounts to choosing lower dimensional subspaces of R4.

Definition (Dirichlet BC)

Let Φ be a 2× 2 solution to the matrix string equation such that
Φ(−1, λ) = 0,Φx(−1, λ) = 1. Then the Dirichlet spectrum
SM = {λ ∈ C : det Φ(1, λ) = 0}
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Isospectral deformations of the DD beam

∂tΦ = (a + b∂x)Φ

Again, only deformations regular at λ =∞ work for measures. The simplest (level
1, only 1/λ power)

J. Szmigielski, University of Saskatchewan, Saskatoon, SK, Canada (Saskatoon, Canada)On the interplay between Approximation Theory, Inverse Problems, and non-smooth solitons.28 October 2022 41 / 48



Deformation equations

Recall that Φ(x , λ) satisfies D2
x Φ = λMΦ where Φ(−1, λ) = 0,Φ′(−1, λ) = 1

and M =

[
0 η
ρ 0

]
.

Then the isospectral, level one, evolution equations for the DD beam are

ηt = (αη)x + αxη + βη, ρt = (αρ)x + αxρ− βρ
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It is instructive to see how these equations look if the interval [−1, 1] is mapped
to R :

ρ→ m, η → n, α→ u, β → v , M→ M =

[
0 n
m 0

]

D2
xΦ =

(
1 + λM

)
Φ

nt = (un)x + uxn + vn, mt = (um)x + uxm − vm

vx = (m − n), u − uxx = m + n

Peakon equations:

ẋi = u(xi),

ṁj = −mj

〈
ux − v

〉
(xi)

ṅj = −nj

〈
ux + v

〉
(xi)
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Stieltjes and strings

For the string, the resolvent (the modified Weyl function)

ω(z) =
1

ldz +
1

md +
1

. . . + 1
l0z
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Stieltjes and beams

For the beam, the modified Weyl function ω(λ) = 1
λΦx(1, λ)Φ(1, λ)−1

(a 2× 2 matrix)

ω(λ) =
1

ld1λ+
1

Md +
1

. . . + 1
l01λ

J. Szmigielski, University of Saskatchewan, Saskatoon, SK, Canada (Saskatoon, Canada)On the interplay between Approximation Theory, Inverse Problems, and non-smooth solitons.28 October 2022 45 / 48



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time

0

2

4

6

8

10

12

di
st

an
ce

data1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time

0

10

20

30

40

po
si

tio
n

first site
second-site

J. Szmigielski, University of Saskatchewan, Saskatoon, SK, Canada (Saskatoon, Canada)On the interplay between Approximation Theory, Inverse Problems, and non-smooth solitons.28 October 2022 46 / 48



Thank you !
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