Nevanlinna and algebraic hyperbolicity

Min Ru

Univeresity of Houston

Introduction

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity.

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity. In the one dimensional case, the hyperbolic (compact) Riemann surfaces are those whose genus is ≥ 2.

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity. In the one dimensional case, the hyperbolic (compact) Riemann surfaces are those whose genus is ≥ 2. For example, $X=\left\{[x: y: z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{n}+y^{n}=z^{n}\right\}$ when $n \geq 4$.

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity. In the one dimensional case, the hyperbolic (compact) Riemann surfaces are those whose genus is ≥ 2. For example, $X=\left\{[x: y: z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{n}+y^{n}=z^{n}\right\}$ when $n \geq 4$. in 1983, Faltings (Fields Medal 1986) proved that For the Fermat's equation $x^{n}+y^{n}=z^{n}$, when $n \geq 4$, it has only finitely many solutions in k where k is any number field (the finite extension of $\mathbb{Q})$.

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity. In the one dimensional case, the hyperbolic (compact) Riemann surfaces are those whose genus is ≥ 2. For example, $X=\left\{[x: y: z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{n}+y^{n}=z^{n}\right\}$ when $n \geq 4$. in 1983, Faltings (Fields Medal 1986) proved that For the Fermat's equation $x^{n}+y^{n}=z^{n}$, when $n \geq 4$, it has only finitely many solutions in k where k is any number field (the finite extension of $\mathbb{Q})$. Faltings actually proved the following stronger version (known as Mordell's conjecture):

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity. In the one dimensional case, the hyperbolic (compact) Riemann surfaces are those whose genus is ≥ 2. For example, $X=\left\{[x: y: z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{n}+y^{n}=z^{n}\right\}$ when $n \geq 4$. in 1983, Faltings (Fields Medal 1986) proved that For the Fermat's equation $x^{n}+y^{n}=z^{n}$, when $n \geq 4$, it has only finitely many solutions in k where k is any number field (the finite extension of \mathbb{Q}). Faltings actually proved the following stronger version (known as Mordell's conjecture): if V is a Riemann surface defined over k which is hyperbolic, then there are only finitely many k-points on $V(k)$ for any number field k.

Introduction

A central concept connecting the arithmetic and geometry of varieties (manifolds) is the notion of hyperbolicity. In the one dimensional case, the hyperbolic (compact) Riemann surfaces are those whose genus is ≥ 2. For example, $X=\left\{[x: y: z] \in \mathbb{P}^{2}(\mathbb{C}) \mid x^{n}+y^{n}=z^{n}\right\}$ when $n \geq 4$. in 1983, Faltings (Fields Medal 1986) proved that For the Fermat's equation $x^{n}+y^{n}=z^{n}$, when $n \geq 4$, it has only finitely many solutions in k where k is any number field (the finite extension of \mathbb{Q}). Faltings actually proved the following stronger version (known as Mordell's conjecture): if V is a Riemann surface defined over k which is hyperbolic, then there are only finitely many k-points on $V(k)$ for any number field k.

There are several equivalent formulations of the concept of hyperbolicity for a given projective manifold X,

There are several equivalent formulations of the concept of hyperbolicity for a given projective manifold X, the simplest being the non-existence of non-constant entire holomorphic curves $f: \mathbb{C} \rightarrow X$ (Brody hyperbolic).

There are several equivalent formulations of the concept of hyperbolicity for a given projective manifold X, the simplest being the non-existence of non-constant entire holomorphic curves $f: \mathbb{C} \rightarrow X$ (Brody hyperbolic). According to Serge Lang, it is believed that Assume X is a projective variety defined over k. Then X is hyperbolic if and only if there are only finitely many k-points on $X(k)$ for any number field k.

There are several equivalent formulations of the concept of hyperbolicity for a given projective manifold X, the simplest being the non-existence of non-constant entire holomorphic curves $f: \mathbb{C} \rightarrow X$ (Brody hyperbolic). According to Serge Lang, it is believed that Assume X is a projective variety defined over k. Then X is hyperbolic if and only if there are only finitely many k-points on $X(k)$ for any number field k.

Various notions of hyperbolicity

Various notions of hyperbolicity

Let M be a complex manifold.

Various notions of hyperbolicity

Let M be a complex manifold.

- Kobayashi hyperbolic.

Various notions of hyperbolicity

Let M be a complex manifold.

- Kobayashi hyperbolic. M is said to be Kobayashi hyperbolic if the Kobayahsi pseudo-metric is a (true) metric.

Various notions of hyperbolicity

Let M be a complex manifold.

- Kobayashi hyperbolic. M is said to be Kobayashi hyperbolic if the Kobayahsi pseudo-metric is a (true) metric. It is motivated by the following Schwarz-Pick Lemma: Let $f: \triangle \rightarrow \Delta$ be holomorphic. Then

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}},
$$

i.e. f is distance decreasing with respect to Poincare metric.

Various notions of hyperbolicity

Let M be a complex manifold.

- Kobayashi hyperbolic. M is said to be Kobayashi hyperbolic if the Kobayahsi pseudo-metric is a (true) metric. It is motivated by the following Schwarz-Pick Lemma: Let $f: \triangle \rightarrow \Delta$ be holomorphic. Then

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

i.e. f is distance decreasing with respect to Poincare metric. Hence the Poincare metric $d s^{2}=\frac{4 d z d \bar{z}}{\left(1-|z|^{2}\right)^{2}}$ on the unit disc is holomorphically invariant.

Various notions of hyperbolicity

Let M be a complex manifold.

- Kobayashi hyperbolic. M is said to be Kobayashi hyperbolic if the Kobayahsi pseudo-metric is a (true) metric. It is motivated by the following Schwarz-Pick Lemma: Let $f: \triangle \rightarrow \Delta$ be holomorphic. Then

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

i.e. f is distance decreasing with respect to Poincare metric.

Hence the Poincare metric $d s^{2}=\frac{4 d z d \bar{z}}{\left(1-|z|^{2}\right)^{2}}$ on the unit disc
is holomorphically invariant. Kobayashi introduced a pseudo-metric on M which is distance decreasing under holomorphic maps by using the help of Poincare metric on the unit disc.

Various notions of hyperbolicity

Let M be a complex manifold.

- Kobayashi hyperbolic. M is said to be Kobayashi hyperbolic if the Kobayahsi pseudo-metric is a (true) metric. It is motivated by the following Schwarz-Pick Lemma: Let $f: \triangle \rightarrow \Delta$ be holomorphic. Then

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

i.e. f is distance decreasing with respect to Poincare metric.

Hence the Poincare metric $d s^{2}=\frac{4 d z d \bar{z}}{\left(1-|z|^{2}\right)^{2}}$ on the unit disc
is holomorphically invariant. Kobayashi introduced a pseudo-metric on M which is distance decreasing under holomorphic maps by using the help of Poincare metric on the unit disc.

It can also be described through the Royden's pseudo-length function, of which the Kobayashi distance is the integrated form as follows:

It can also be described through the Royden's pseudo-length function, of which the Kobayashi distance is the integrated form as follows: Let $p \in M$ and $v \in T_{p} M$, we define

$$
\begin{aligned}
R_{M}(p, v)= & \inf \left\{\left.\frac{1}{R} \right\rvert\, \text { there exists a holomorphic map } f: \triangle(R) \rightarrow M\right. \\
& \text { with } \left.f(0)=p, f^{\prime}(0)=v\right\}
\end{aligned}
$$

- Brody hyperbolicity.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody:
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$. Hence, since d_{M} is a distance, $f(a)=f(b)$, which implies that f is constant.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$. Hence, since d_{M} is a distance, $f(a)=f(b)$, which implies that f is constant. Conversely, Brody proved that, if M is compact, then Brody implies Kobayashi.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$. Hence, since d_{M} is a distance, $f(a)=f(b)$, which implies that f is constant. Conversely, Brody proved that, if M is compact, then Brody implies Kobayashi.
- Picard hyperbolicity.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$. Hence, since d_{M} is a distance, $f(a)=f(b)$, which implies that f is constant. Conversely, Brody proved that, if M is compact, then Brody implies Kobayashi.
- Picard hyperbolicity. If the " \triangle^{*}-extension property" holds, then M is said to be Picard hyperbolic,
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$. Hence, since d_{M} is a distance, $f(a)=f(b)$, which implies that f is constant. Conversely, Brody proved that, if M is compact, then Brody implies Kobayashi.
- Picard hyperbolicity. If the " \triangle^{*}-extension property" holds, then M is said to be Picard hyperbolic, ,i.e., Every holomorphic map $f: \triangle^{*} \rightarrow M$ extends to a holomorphic map $f: \triangle \rightarrow \bar{M}$.
- Brody hyperbolicity. M is said to be Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow M$ is constant. Kobayashi implies Brody: By the distance decreasing property, for every $a, b \in \mathbb{C}, d_{M}(f(a), f(b)) \leq d_{\mathbb{C}}(a, b) \equiv 0$. Hence, since d_{M} is a distance, $f(a)=f(b)$, which implies that f is constant. Conversely, Brody proved that, if M is compact, then Brody implies Kobayashi.
- Picard hyperbolicity. If the " \triangle^{*}-extension property" holds, then M is said to be Picard hyperbolic, ,i.e., Every holomorphic map $f: \triangle^{*} \rightarrow M$ extends to a holomorphic map $f: \triangle \rightarrow \bar{M}$. Kwack and Kobayashi proved that if M is Kobayashi hyperbolic and is also hyperbolically embedded in some compactification \bar{M}, then M is Picard hyperbolic.

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height:

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height: he proved that if X is hyperbolic then there exists a positive (1,1)-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have $\int_{R} f^{*} \omega \leq \max \{0,2 g-2\}$.

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height: he proved that if X is hyperbolic then there exists a positive (1,1)-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have $\int_{R} f^{*} \omega \leq \max \{0,2 g-2\}$. (We say that X is algebraically hyperbolic if X has such property).

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height: he proved that if X is hyperbolic then there exists a positive (1,1)-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have $\int_{R} f^{*} \omega \leq \max \{0,2 g-2\}$. (We say that X is algebraically hyperbolic if X has such property). Outline of the proof: Let k_{X} be the Kobayashi-Royden infinitesimal pseudo-norm on X.

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height: he proved that if X is hyperbolic then there exists a positive (1,1)-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have $\int_{R} f^{*} \omega \leq \max \{0,2 g-2\}$. (We say that X is algebraically hyperbolic if X has such property). Outline of the proof: Let k_{X} be the Kobayashi-Royden infinitesimal pseudo-norm on $X . \quad \exists c_{1}>0$ such that $c_{1}\|\cdot\|_{\omega} \leq k_{X}$. Denote by σ_{R} the metric form on R with constant curvature of -1 .

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height: he proved that if X is hyperbolic then there exists a positive (1,1)-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have $\int_{R} f^{*} \omega \leq \max \{0,2 g-2\}$. (We say that X is algebraically hyperbolic if X has such property). Outline of the proof: Let k_{X} be the Kobayashi-Royden infinitesimal pseudo-norm on $X . \quad \exists c_{1}>0$ such that $c_{1}\|\cdot\|_{\omega} \leq k_{x}$. Denote by σ_{R} the metric form on R with constant curvature of -1 . By the distance decreasing properties for Kobayashi distances, $k_{X}\left(f_{*} \xi\right) \leq k_{R}(\xi) \leq c\|\xi\|_{\sigma_{R}}$ for some $c>0$.

Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has further boundness property for its height: he proved that if X is hyperbolic then there exists a positive (1,1)-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have $\int_{R} f^{*} \omega \leq \max \{0,2 g-2\}$. (We say that X is algebraically hyperbolic if X has such property). Outline of the proof: Let k_{X} be the Kobayashi-Royden infinitesimal pseudo-norm on X. $\exists c_{1}>0$ such that $c_{1}\|\cdot\|_{\omega} \leq k_{X}$. Denote by σ_{R} the metric form on R with constant curvature of -1 . By the distance decreasing properties for Kobayashi distances, $k_{X}\left(f_{*} \xi\right) \leq k_{R}(\xi) \leq c\|\xi\|_{\sigma_{R}}$ for some $c>0$. Hence $c_{1}\left\|f_{*} \xi\right\|_{\omega} \leq c\|\xi\|_{\sigma_{R}}$. That is $c^{2} \sigma_{R} \geq c_{1}^{2} f^{*}(\omega)$. Therefore, by taking the integration over R and using the fact (Gauss-Bonnet formula) that $\int_{R} \sigma_{R}=-\int_{R} K_{R} \sigma_{R}=2 g-2$.

Algebraic hyperbolicity for log-pairs (X, D)

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.
Riemann's relation.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.
Riemann's relation. Let $a_{1}, \ldots, a_{q} \in S^{\prime}$ and let $E=f^{-1}\left(\left\{a_{1}, \ldots, a_{q}\right\}\right) \subseteq S$. Then
$\left(q-2+2 g^{\prime}\right) \operatorname{deg}(f) \leq|E|+(2 g-2)$.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.
Riemann's relation. Let $a_{1}, \ldots, a_{q} \in S^{\prime}$ and let $E=f^{-1}\left(\left\{a_{1}, \ldots, a_{q}\right\}\right) \subseteq S$. Then
$\left(q-2+2 g^{\prime}\right) \operatorname{deg}(f) \leq|E|+(2 g-2)$. Height inequality.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.
Riemann's relation. Let $a_{1}, \ldots, a_{q} \in S^{\prime}$ and let $E=f^{-1}\left(\left\{a_{1}, \ldots, a_{q}\right\}\right) \subseteq S$. Then
$\left(q-2+2 g^{\prime}\right) \operatorname{deg}(f) \leq|E|+(2 g-2)$. Height inequality.
Proof. For each $a_{j} \in S^{\prime}$, from the definition, $\operatorname{deg}(f):=\# f^{-1}\left(a_{j}\right)+\sum_{p \in S, f(p)=a_{j}}\left(v_{f}(p)-1\right)$. Hence $q \operatorname{deg}(f)=\# E+\sum_{p \in E}\left(v_{f}(p)-1\right)$.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.
Riemann's relation. Let $a_{1}, \ldots, a_{q} \in S^{\prime}$ and let $E=f^{-1}\left(\left\{a_{1}, \ldots, a_{q}\right\}\right) \subseteq S$. Then
$\left(q-2+2 g^{\prime}\right) \operatorname{deg}(f) \leq|E|+(2 g-2)$. Height inequality.
Proof. For each $a_{j} \in S^{\prime}$, from the definition, $\operatorname{deg}(f):=\# f^{-1}\left(a_{j}\right)+\sum_{p \in S, f(p)=a_{j}}\left(v_{f}(p)-1\right)$. Hence $q \operatorname{deg}(f)=\# E+\sum_{p \in E}\left(v_{f}(p)-1\right)$. Using the fact $\sum_{p \in E}\left(v_{f}(p)-1\right) \leq \sum_{p \in S}\left(v_{f}(p)-1\right)$ and the Riemann-Hurwitz theorem, we get $q \operatorname{deg}(f) \leq \# E+(2 g-2)+\left(2-2 g^{\prime}\right) \operatorname{deg}(f)$.

Algebraic hyperbolicity for log-pairs (X, D)

Simple case: Let $f: S \rightarrow S^{\prime}$ be holomorphic, where S, S^{\prime} are compact Riemann surfaces. We define $\operatorname{deg}(f):=\# f^{-1}(a)+\sum_{p \in S, f(p)=a}\left(v_{f}(p)-1\right)$ for any $a \in S^{\prime}$, i.e. the number of solutions of $f(z)=a$ on S, counting multiplicities. Riemann-Hurwitz Theorem. Let S, S^{\prime} be compact Riemann surfaces with genus g and g^{\prime}. Then
$(2 g-2)=\left(2 g^{\prime}-2\right) \operatorname{deg}(f)+\sum_{p \in S}\left(v_{f}(p)-1\right)$.
Riemann's relation. Let $a_{1}, \ldots, a_{q} \in S^{\prime}$ and let $E=f^{-1}\left(\left\{a_{1}, \ldots, a_{q}\right\}\right) \subseteq S$. Then
$\left(q-2+2 g^{\prime}\right) \operatorname{deg}(f) \leq|E|+(2 g-2)$. Height inequality.
Proof. For each $a_{j} \in S^{\prime}$, from the definition, $\operatorname{deg}(f):=\# f^{-1}\left(a_{j}\right)+\sum_{p \in S, f(p)=a_{j}}\left(v_{f}(p)-1\right)$. Hence $q \operatorname{deg}(f)=\# E+\sum_{p \in E}\left(v_{f}(p)-1\right)$. Using the fact $\sum_{p \in E}\left(v_{f}(p)-1\right) \leq \sum_{p \in S}\left(v_{f}(p)-1\right)$ and the Riemann-Hurwitz theorem, we get $q \operatorname{deg}(f) \leq \# E+(2 g-2)+\left(2-2 g^{\prime}\right) \operatorname{deg}(f)$.

Let X be a projective variety and D be an effective divisor.

Let X be a projective variety and D be an effective divisor. According to Xi Chen, (X, D) is said to be algebraically hyperbolic if \exists a positive $(1,1)$-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

where $\bar{n}_{f}(D)$ is the number of points of $f^{-1}(D)$ on X and g is the genus of R.

Let X be a projective variety and D be an effective divisor. According to Xi Chen, (X, D) is said to be algebraically hyperbolic if \exists a positive $(1,1)$-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

where $\bar{n}_{f}(D)$ is the number of points of $f^{-1}(D)$ on X and g is the genus of R. Pacienza-Rousseau (J. Reine Angew. Math., 2007) proved that $X \backslash D$ is hyperbolically embeddable in $X \Rightarrow(X, D)$ is algebraically hyperbolic.

Let X be a projective variety and D be an effective divisor. According to Xi Chen, (X, D) is said to be algebraically hyperbolic if \exists a positive $(1,1)$-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

where $\bar{n}_{f}(D)$ is the number of points of $f^{-1}(D)$ on X and g is the genus of R. Pacienza-Rousseau (J. Reine Angew. Math., 2007) proved that $X \backslash D$ is hyperbolically embeddable in $X \Rightarrow(X, D)$ is algebraically hyperbolic. Note: Brody hyperbolic \Leftarrow Kobayashi hyperbolic $\Leftarrow X \backslash D$ is hyperbolically embeddable (strongest condition).

Let X be a projective variety and D be an effective divisor. According to Xi Chen, (X, D) is said to be algebraically hyperbolic if \exists a positive $(1,1)$-form ω on X such that for any compact Riemann surface R and every holomorphic map $f: R \rightarrow X$, we have

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

where $\bar{n}_{f}(D)$ is the number of points of $f^{-1}(D)$ on X and g is the genus of R. Pacienza-Rousseau (J. Reine Angew. Math., 2007) proved that $X \backslash D$ is hyperbolically embeddable in $X \Rightarrow(X, D)$ is algebraically hyperbolic. Note: Brody hyperbolic \Leftarrow Kobayashi hyperbolic $\Leftarrow X \backslash D$ is hyperbolically embeddable (strongest condition). Ariyan Javanpeykar's recent series of papers for (X, D) (especially the recent paper with A . Levin) assumes that $X \backslash D$ is hyperbolically embeddable.

Why estimates (height inequality) are important?

Why estimates (height inequality) are important?

- Urata proved that if X is hyperbolic, then for any projective variety $Y, y \in Y$ and $x \in X$, the set of morphisms $f: Y \rightarrow X$ with $f(y)=x$ is finite (is called geometrically hyperbolic).

Why estimates (height inequality) are important?

- Urata proved that if X is hyperbolic, then for any projective variety $Y, y \in Y$ and $x \in X$, the set of morphisms $f: Y \rightarrow X$ with $f(y)=x$ is finite (is called geometrically hyperbolic).
- If $T_{f, \eta}(r) \leq O(1)$, then $f: \mathbb{C} \rightarrow X$ is constant.

Why estimates (height inequality) are important?

- Urata proved that if X is hyperbolic, then for any projective variety $Y, y \in Y$ and $x \in X$, the set of morphisms $f: Y \rightarrow X$ with $f(y)=x$ is finite (is called geometrically hyperbolic).
- If $T_{f, \eta}(r) \leq O(1)$, then $f: \mathbb{C} \rightarrow X$ is constant. For $\phi: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$, if $T_{\phi}(r) \leq_{\text {exc }} O(\log r)$, then ϕ can be extended to a holomorphic map from $\mathbb{C} \cup\{\infty\}-\overline{\triangle\left(r_{0}\right)}$ to $\left.\bar{X}\right)$.

Why estimates (height inequality) are important?

- Urata proved that if X is hyperbolic, then for any projective variety $Y, y \in Y$ and $x \in X$, the set of morphisms $f: Y \rightarrow X$ with $f(y)=x$ is finite (is called geometrically hyperbolic).
- If $T_{f, \eta}(r) \leq O(1)$, then $f: \mathbb{C} \rightarrow X$ is constant. For $\phi: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$, if $T_{\phi}(r) \leq_{\text {exc }} O(\log r)$, then ϕ can be extended to a holomorphic map from $\mathbb{C} \cup\{\infty\}-\overline{\triangle\left(r_{0}\right)}$ to $\left.\bar{X}\right)$.
- Lang's conjecture: $\# X(k)<\infty$ (Mordellic) over k for every number field k if X is defined over $\overline{\mathbb{Q}}$ and is hyperbolic. The method in the arithmetic on proving the finiteness of rational points is try to bound the height and then use the Northcott's theorem.

Why estimates (height inequality) are important?

- Urata proved that if X is hyperbolic, then for any projective variety $Y, y \in Y$ and $x \in X$, the set of morphisms $f: Y \rightarrow X$ with $f(y)=x$ is finite (is called geometrically hyperbolic).
- If $T_{f, \eta}(r) \leq O(1)$, then $f: \mathbb{C} \rightarrow X$ is constant. For $\phi: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$, if $T_{\phi}(r) \leq_{\text {exc }} O(\log r)$, then ϕ can be extended to a holomorphic map from $\mathbb{C} \cup\{\infty\}-\overline{\triangle\left(r_{0}\right)}$ to $\left.\bar{X}\right)$.
- Lang's conjecture: $\# X(k)<\infty$ (Mordellic) over k for every number field k if X is defined over $\overline{\mathbb{Q}}$ and is hyperbolic. The method in the arithmetic on proving the finiteness of rational points is try to bound the height and then use the Northcott's theorem.
- Ariyan Javanpeykar recently had a series of papers about the arithmetic and geometric properties for an algebraic hyperbolic X (the height inequality plays an important role).

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Recall that $X \backslash D$ is Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow X \backslash D$ is constant.

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Recall that $X \backslash D$ is Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow X \backslash D$ is constant. So Brody hyperbolicity involves the transcendental case. To get a quantitative statement (height inequality) for the given pair (X, D), we need bound the height.

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Recall that $X \backslash D$ is Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow X \backslash D$ is constant. So Brody hyperbolicity involves the transcendental case. To get a quantitative statement (height inequality) for the given pair (X, D), we need bound the height. Height:

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Recall that $X \backslash D$ is Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow X \backslash D$ is constant. So Brody hyperbolicity involves the transcendental case. To get a quantitative statement (height inequality) for the given pair (X, D), we need bound the height. Height: Let $f: \mathbb{C} \rightarrow X$ be holomorphic. We define, for a positive (1, 1)-form η on X,

$$
T_{f, \eta}(r):=\int_{1}^{r}\left(\int_{B(t)} f^{*} \eta\right) \frac{d t}{t}
$$

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Recall that $X \backslash D$ is Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow X \backslash D$ is constant. So Brody hyperbolicity involves the transcendental case. To get a quantitative statement (height inequality) for the given pair (X, D), we need bound the height. Height: Let $f: \mathbb{C} \rightarrow X$ be holomorphic. We define, for a positive (1, 1)-form η on X,

$$
T_{f, \eta}(r):=\int_{1}^{r}\left(\int_{B(t)} f^{*} \eta\right) \frac{d t}{t}
$$

Similar to the height inequality:
$\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}$ for algebraic hyperbolicity of (X, D), we need to bound the height function $T_{f, \eta}(r)$ in terms of the counting function $N_{f}(r, D)$

Nevanlinna theory (transcendental case): The height inequalities (The Second Main Theorem)

Recall that $X \backslash D$ is Brody hyperbolic if every holomorphic map $f: \mathbb{C} \rightarrow X \backslash D$ is constant. So Brody hyperbolicity involves the transcendental case. To get a quantitative statement (height inequality) for the given pair (X, D), we need bound the height. Height: Let $f: \mathbb{C} \rightarrow X$ be holomorphic. We define, for a positive (1, 1)-form η on X,

$$
T_{f, \eta}(r):=\int_{1}^{r}\left(\int_{B(t)} f^{*} \eta\right) \frac{d t}{t}
$$

Similar to the height inequality:
$\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}$ for algebraic hyperbolicity of (X, D), we need to bound the height function $T_{f, \eta}(r)$ in terms of the counting function $N_{f}(r, D)$ (Second Main Theorem).

The First Main Theorem:

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$.

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$.

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem: Denote by $T_{f, D}(r):=T_{f, c_{1}[D]}(r)$,

$$
T_{f, D}(r)=m_{f}(r, D)+N_{f}(r, D)+O(1)
$$

where

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem: Denote by $T_{f, D}(r):=T_{f, c_{1}[D]}(r)$,

$$
T_{f, D}(r)=m_{f}(r, D)+N_{f}(r, D)+O(1)
$$

where $\quad m_{f}(r, D)=-\int_{0}^{2 \pi} \log \| s_{D}\left(f\left(r e^{i \theta}\right) \| \frac{d \theta}{2 \pi}\right.$,

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem: Denote by $T_{f, D}(r):=T_{f, c_{1}[D]}(r)$,

$$
T_{f, D}(r)=m_{f}(r, D)+N_{f}(r, D)+O(1)
$$

where $m_{f}(r, D)=-\int_{0}^{2 \pi} \log \| s_{D}\left(f\left(r e^{i \theta}\right) \| \frac{d \theta}{2 \pi}\right.$,
$n_{f, D}(r):=\sum_{a \in B(r)} \nu_{f^{*} D}(a)$ be degree of $f^{*} D$ counted inside $B(r)$, and $n_{f, D}^{[k]}(r)$ denote its truncated version,

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem: Denote by $T_{f, D}(r):=T_{f, c_{1}[D]}(r)$,

$$
T_{f, D}(r)=m_{f}(r, D)+N_{f}(r, D)+O(1)
$$

where $\quad m_{f}(r, D)=-\int_{0}^{2 \pi} \log \| s_{D}\left(f\left(r e^{i \theta}\right) \| \frac{d \theta}{2 \pi}\right.$,
$n_{f, D}(r):=\sum_{a \in B(r)} \nu_{f^{*} D}(a)$ be degree of $f^{*} D$ counted inside $B(r)$, and $n_{f, D}^{[k]}(r)$ denote its truncated version, $N_{f}(r, D):=\int_{1}^{r} n_{f, D}(t) \frac{d t}{t}$, and similarly $N_{f}^{[k]}(r, D):=\int_{1}^{r} n_{f, D}^{[k]}(t) \frac{d t}{t}$.

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem: Denote by $T_{f, D}(r):=T_{f, c_{1}[D]}(r)$,

$$
T_{f, D}(r)=m_{f}(r, D)+N_{f}(r, D)+O(1)
$$

where $m_{f}(r, D)=-\int_{0}^{2 \pi} \log \| s_{D}\left(f\left(r e^{i \theta}\right) \| \frac{d \theta}{2 \pi}\right.$,
$n_{f, D}(r):=\sum_{a \in B(r)} \nu_{f^{*} D}(a)$ be degree of $f^{*} D$ counted inside $B(r)$, and $n_{f, D}^{[k]}(r)$ denote its truncated version, $N_{f}(r, D):=\int_{1}^{r} n_{f, D}(t) \frac{d t}{t}$, and similarly $N_{f}^{[k]}(r, D):=\int_{1}^{r} n_{f, D}^{[k]}(t) \frac{d t}{t}$. We also write $\bar{N}_{f}(r, D):=N_{f}^{[1]}(r, D)$.

The First Main Theorem: let D be an effective Cartier divisor on X. Let s_{D} be the canonical section of $[D]$ (i.e. $\left[s_{D}=0\right]=D$) and consider $\|s\|^{2}:=\left|s_{\alpha}\right|^{2} h_{\alpha}$. By Poincare-Lelong formula, $-d d^{c}\left[\log \left\|f^{*} s_{D}\right\|^{2}\right]=-f^{*} D+f^{*} c_{1}([D])$. Applying $\int_{1}^{t} \frac{d t}{t} \int_{|z|<t}$ and use Green-Jensen (Stoke's theorem), we get the First Main Theorem: Denote by $T_{f, D}(r):=T_{f, c_{1}[D]}(r)$,

$$
T_{f, D}(r)=m_{f}(r, D)+N_{f}(r, D)+O(1)
$$

where $m_{f}(r, D)=-\int_{0}^{2 \pi} \log \| s_{D}\left(f\left(r e^{i \theta}\right) \| \frac{d \theta}{2 \pi}\right.$,
$n_{f, D}(r):=\sum_{a \in B(r)} \nu_{f^{*} D}(a)$ be degree of $f^{*} D$ counted inside $B(r)$, and $n_{f, D}^{[k]}(r)$ denote its truncated version, $N_{f}(r, D):=\int_{1}^{r} n_{f, D}(t) \frac{d t}{t}$, and similarly $N_{f}^{[k]}(r, D):=\int_{1}^{r} n_{f, D}^{[k]}(t) \frac{d t}{t}$. We also write $\bar{N}_{f}(r, D):=N_{f}^{[1]}(r, D)$.

Known results about the Second Main Theorem:

Known results about the Second Main Theorem: The Second Main Theorem seeks to bound $T_{f, c_{1}[D]}(r)$ in terms of $N_{f}(r, D)$.

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\delta>0$,

$$
(q-2) T_{f}(r) \leq_{e x c} \sum_{j=1}^{q} \bar{N}_{f}\left(r, a_{j}\right)+\log T_{f}(r)+\delta \log r
$$

Known results about the Second Main Theorem: The Second Main Theorem seeks to bound $T_{f, c_{1}[D]}(r)$ in terms of $N_{f}(r, D)$.

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\delta>0$,

$$
(q-2) T_{f}(r) \leq_{e x c} \sum_{j=1}^{q} \bar{N}_{f}\left(r, a_{j}\right)+\log T_{f}(r)+\delta \log r
$$

- H. Cartan, 1933 Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate holomorphic map.

Known results about the Second Main Theorem: The Second Main Theorem seeks to bound $T_{f, c_{1}[D]}(r)$ in terms of $N_{f}(r, D)$.

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\delta>0$,

$$
(q-2) T_{f}(r) \leq_{e x c} \sum_{j=1}^{q} \bar{N}_{f}\left(r, a_{j}\right)+\log T_{f}(r)+\delta \log r
$$

- H. Cartan, 1933 Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate holomorphic map. Let H_{1}, \ldots, H_{q} be hyperplanes on $\mathbb{P}^{n}(\mathbb{C})$ in general position, then, for $\delta>0$,

Known results about the Second Main Theorem: The Second Main Theorem seeks to bound $T_{f, c_{1}[D]}(r)$ in terms of $N_{f}(r, D)$.

- Nevanlinna 1929: Let f be meromorphic (non-constant) on \mathbb{C} and $a_{1}, \ldots, a_{q} \in \mathbb{C} \cup\{\infty\}$ distinct. Then, for any $\delta>0$,

$$
(q-2) T_{f}(r) \leq_{e x c} \sum_{j=1}^{q} \bar{N}_{f}\left(r, a_{j}\right)+\log T_{f}(r)+\delta \log r
$$

- H. Cartan, 1933 Let $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly nondegenerate holomorphic map. Let H_{1}, \ldots, H_{q} be hyperplanes on $\mathbb{P}^{n}(\mathbb{C})$ in general position, then, for $\delta>0$,

$$
\begin{aligned}
& (q-(n+1)) T_{f}(r) \leq_{e x c} \sum_{j=1}^{q} N_{f}^{[n]}\left(r, H_{j}\right) \\
& +\left(\frac{n(n+1)}{2}\right)\left(\log T_{f}(r)+\delta \log r\right)+O(1) .
\end{aligned}
$$

- Ru, 2009: Let $f: \mathbb{C} \rightarrow X$ be holo and Zariski dense, D_{1}, \ldots, D_{q} be divisors in general position in X. Assume that $D_{j} \sim d_{j} A$ (A being ample). Then, for $\forall \delta>0$,

$$
(q-(n+1)) T_{f, A}(r) \leq_{e x c} \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}\left(r, D_{j}\right)+C\left(\log ^{+} T_{f, A}(r)+\delta \log r\right)
$$

- Ru, 2009: Let $f: \mathbb{C} \rightarrow X$ be holo and Zariski dense, D_{1}, \ldots, D_{q} be divisors in general position in X. Assume that $D_{j} \sim d_{j} A$ (A being ample). Then, for $\forall \delta>0$,

$$
(q-(n+1)) T_{f, A}(r) \leq_{e x c} \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}\left(r, D_{j}\right)+C\left(\log ^{+} T_{f, A}(r)+\delta \log r\right)
$$

- Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a very ample line bundle over X. Let $D \in\left|A^{m}\right|$ be a general smooth hypersurface with $m \geq(n+2)^{n+3}(n+1)^{n+3}$.
- Ru, 2009: Let $f: \mathbb{C} \rightarrow X$ be holo and Zariski dense, D_{1}, \ldots, D_{q} be divisors in general position in X. Assume that $D_{j} \sim d_{j} A$ (A being ample). Then, for $\forall \delta>0$,

$$
(q-(n+1)) T_{f, A}(r) \leq_{e x c} \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}\left(r, D_{j}\right)+C\left(\log ^{+} T_{f, A}(r)+\delta \log r\right)
$$

- Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a very ample line bundle over X. Let $D \in\left|A^{m}\right|$ be a general smooth hypersurface with $m \geq(n+2)^{n+3}(n+1)^{n+3}$. Let $f: \mathbb{C} \rightarrow X$ be holomorphic with $f(\mathbb{C}) \not \subset D$, for $\delta>0$,

$$
T_{f, A}(r) \leq_{e x c} \bar{N}_{f}(r, D)+C\left(\log ^{+} T_{f, A}(r)+\delta \log r\right)+O(1)
$$

- Ru, 2009: Let $f: \mathbb{C} \rightarrow X$ be holo and Zariski dense,
D_{1}, \ldots, D_{q} be divisors in general position in X. Assume that $D_{j} \sim d_{j} A$ (A being ample). Then, for $\forall \delta>0$,

$$
(q-(n+1)) T_{f, A}(r) \leq \leq_{e x c} \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}\left(r, D_{j}\right)+C\left(\log ^{+} T_{f, A}(r)+\delta \log r\right)
$$

- Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a very ample line bundle over X. Let $D \in\left|A^{m}\right|$ be a general smooth hypersurface with $m \geq(n+2)^{n+3}(n+1)^{n+3}$. Let $f: \mathbb{C} \rightarrow X$ be holomorphic with $f(\mathbb{C}) \not \subset D$, for $\delta>0$,

$$
T_{f, A}(r) \leq_{e x c} \bar{N}_{f}(r, D)+C\left(\log ^{+} T_{f, A}(r)+\delta \log r\right)+O(1)
$$

- Siu-Yeung, 1997 (Noguchi-W-Y). Let A be an abelian variety and D be an ample divisor on A. Let $f: \mathbb{C} \rightarrow A$ be holomorphic with $f(\mathbb{C}) \not \subset D$. Then

$$
T_{f, D}(r) \leq_{\text {exc }} \bar{N}_{f}^{\left[k_{0}\right]}(r, D)+C\left(\log ^{+} T_{f, D}(r)+\delta \log r\right)+O(1)
$$

Nevanlinna hyperbolicity

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface.

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface. A non-compact Riemann surface Y is parabolic if it admits a parabolic exhaustion function $\sigma: Y \rightarrow[0, \infty)$ such that $\log \sigma$ is harmonic outside a compact subset of Y.

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface. A non-compact Riemann surface Y is parabolic if it admits a parabolic exhaustion function $\sigma: Y \rightarrow[0, \infty)$ such that $\log \sigma$ is harmonic outside a compact subset of Y. Here we restrict it to a special case, i.e., we further assume that

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface. A non-compact Riemann surface Y is parabolic if it admits a parabolic exhaustion function $\sigma: Y \rightarrow[0, \infty)$ such that $\log \sigma$ is harmonic outside a compact subset of Y. Here we restrict it to a special case, i.e., we further assume that

- $\log \sigma$ is harmonic outside possibly a finite set

$$
\Sigma:=\left\{P_{1}, \ldots, P_{k}\right\} \text { on } Y .
$$

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface. A non-compact Riemann surface Y is parabolic if it admits a parabolic exhaustion function $\sigma: Y \rightarrow[0, \infty)$ such that $\log \sigma$ is harmonic outside a compact subset of Y. Here we restrict it to a special case, i.e., we further assume that

- $\log \sigma$ is harmonic outside possibly a finite set $\Sigma:=\left\{P_{1}, \ldots, P_{k}\right\}$ on Y.
- At each $P_{i} \in \Sigma$, in a coordinate chart (U, z) centered at P_{i} that does not contain other points in Σ, $\log \sigma(z)=k_{i} \log |z|+h_{P_{i}}(z)$, where $h_{P_{i}}$ is a harmonic function on U.

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface. A non-compact Riemann surface Y is parabolic if it admits a parabolic exhaustion function $\sigma: Y \rightarrow[0, \infty)$ such that $\log \sigma$ is harmonic outside a compact subset of Y. Here we restrict it to a special case, i.e., we further assume that

- $\log \sigma$ is harmonic outside possibly a finite set $\Sigma:=\left\{P_{1}, \ldots, P_{k}\right\}$ on Y.
- At each $P_{i} \in \Sigma$, in a coordinate chart (U, z) centered at P_{i} that does not contain other points in Σ, $\log \sigma(z)=k_{i} \log |z|+h_{P_{i}}(z)$, where $h_{P_{i}}$ is a harmonic function on U.

Let $B(r):=\{y \in Y: \sigma(y)<r\}$ and
$S(r):=\{y \in Y: \sigma(y)=r\}$.

Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the transcendental case, we replace R with an open parabolic Riemann surface. A non-compact Riemann surface Y is parabolic if it admits a parabolic exhaustion function $\sigma: Y \rightarrow[0, \infty)$ such that $\log \sigma$ is harmonic outside a compact subset of Y. Here we restrict it to a special case, i.e., we further assume that

- $\log \sigma$ is harmonic outside possibly a finite set $\Sigma:=\left\{P_{1}, \ldots, P_{k}\right\}$ on Y.
- At each $P_{i} \in \Sigma$, in a coordinate chart (U, z) centered at P_{i} that does not contain other points in Σ, $\log \sigma(z)=k_{i} \log |z|+h_{P_{i}}(z)$, where $h_{P_{i}}$ is a harmonic function on U.

Let $B(r):=\{y \in Y: \sigma(y)<r\}$ and
$S(r):=\{y \in Y: \sigma(y)=r\}$. Let $d \mu_{r}=\left.d^{c} \log \sigma\right|_{S(r)}$. Let
$\varsigma:=\int_{S(r)} d \mu_{r}$, which is is independent of r for r large enough.

Let $\chi_{\sigma}(r)$ be the Euler characteristic of $B(r)$, and define

$$
\mathfrak{X}_{\sigma}(r):=\int_{1}^{r} \chi_{\sigma}(t) \frac{d t}{t} .
$$

Let $\chi_{\sigma}(r)$ be the Euler characteristic of $B(r)$, and define

$$
\mathfrak{X}_{\sigma}(r):=\int_{1}^{r} \chi_{\sigma}(t) \frac{d t}{t} .
$$

Fixing a nowhere vanishing global holomorphic vector field ξ on Y, we define

$$
\mathfrak{E}_{\sigma}(r):=\int_{S(r)} \log ^{-}|d \sigma(\xi)|^{2} d \mu_{r}
$$

where, for a positive real number $x, \log ^{+} x=\max \{0, \log x\}$ and $\log ^{-} x=-\min \{0, \log x\}$.

Let $\chi_{\sigma}(r)$ be the Euler characteristic of $B(r)$, and define

$$
\mathfrak{X}_{\sigma}(r):=\int_{1}^{r} \chi_{\sigma}(t) \frac{d t}{t} .
$$

Fixing a nowhere vanishing global holomorphic vector field ξ on Y, we define

$$
\mathfrak{E}_{\sigma}(r):=\int_{S(r)} \log ^{-}|d \sigma(\xi)|^{2} d \mu_{r}
$$

where, for a positive real number $x, \log ^{+} x=\max \{0, \log x\}$ and $\log ^{-} x=-\min \{0, \log x\}$. We say that (X, D) is Nevanlinna hyperbolic if there is a positive $(1,1)$-form η on X such that for any parabolic Riemann surface Y and every holomorphic map $f: Y \rightarrow X$ with $f(Y) \not \subset D$ and for $\delta>0$, one has

$$
T_{f, \eta}(r) \leq_{\operatorname{exc}} \bar{N}_{f}(r, D)-\mathfrak{X}_{\sigma}(r)+(\delta+2 \varsigma) \log r+\mathfrak{E}_{\sigma}(r)+O(1) .
$$

Note that the error term $(\delta+2 \varsigma)$ appeared before $\log r$ is crucial.

Note that the error term $(\delta+2 \varsigma)$ appeared before $\log r$ is crucial. When $Y:=\mathbb{C}$ (the complex plane) together with exhaustion function $\sigma(z)=|z|$ is a parabolic Riemann surface with $\varsigma=\frac{1}{2}$, $\mathfrak{X}_{\sigma}(r)=\log r, \mathfrak{E}_{\sigma}(r)=O(1)$, so the error term is just $\delta \log r+O(1)$.

Note that the error term $(\delta+2 \varsigma)$ appeared before $\log r$ is crucial. When $Y:=\mathbb{C}$ (the complex plane) together with exhaustion function $\sigma(z)=|z|$ is a parabolic Riemann surface with $\varsigma=\frac{1}{2}$, $\mathfrak{X}_{\sigma}(r)=\log r, \mathfrak{E}_{\sigma}(r)=O(1)$, so the error term is just $\delta \log r+O(1)$. In particular, if $f(\mathbb{C})$ omits D, then $\left.T_{f, \eta}(r)\right) \leq \leq_{\text {exc }} \delta \log r+O(1)$, so f is constant.

Note that the error term $(\delta+2 \varsigma)$ appeared before $\log r$ is crucial. When $Y:=\mathbb{C}$ (the complex plane) together with exhaustion function $\sigma(z)=|z|$ is a parabolic Riemann surface with $\varsigma=\frac{1}{2}$, $\mathfrak{X}_{\sigma}(r)=\log r, \mathfrak{E}_{\sigma}(r)=O(1)$, so the error term is just $\delta \log r+O(1)$. In particular, if $f(\mathbb{C})$ omits D, then $\left.T_{f, \eta}(r)\right) \leq_{\text {exc }} \delta \log r+O(1)$, so f is constant. Hence Nevanlinna hyperbolicity \Rightarrow Brody hyperbolicity.

Note that the error term $(\delta+2 \varsigma)$ appeared before $\log r$ is crucial. When $Y:=\mathbb{C}$ (the complex plane) together with exhaustion function $\sigma(z)=|z|$ is a parabolic Riemann surface with $\varsigma=\frac{1}{2}$, $\mathfrak{X}_{\sigma}(r)=\log r, \mathfrak{E}_{\sigma}(r)=O(1)$, so the error term is just $\delta \log r+O(1)$. In particular, if $f(\mathbb{C})$ omits D, then $\left.T_{f, \eta}(r)\right) \leq_{\text {exc }} \delta \log r+O(1)$, so f is constant. Hence Nevanlinna hyperbolicity \Rightarrow Brody hyperbolicity. Also it is known that if $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ is holomorphic and $T_{f}\left(r, r_{1}\right) \leq_{\text {exc }} O(\log r)$, then f can be extended to a holomorphic map from $\mathbb{C} \cup\{\infty\}-\overline{\triangle\left(r_{0}\right)}$ to $\mathbb{P}^{n}(\mathbb{C})(M$. Green (1975), Siu (2015)).

Note that the error term $(\delta+2 \varsigma)$ appeared before $\log r$ is crucial. When $Y:=\mathbb{C}$ (the complex plane) together with exhaustion function $\sigma(z)=|z|$ is a parabolic Riemann surface with $\varsigma=\frac{1}{2}$, $\mathfrak{X}_{\sigma}(r)=\log r, \mathfrak{E}_{\sigma}(r)=O(1)$, so the error term is just $\delta \log r+O(1)$. In particular, if $f(\mathbb{C})$ omits D, then $\left.T_{f, \eta}(r)\right) \leq_{\text {exc }} \delta \log r+O(1)$, so f is constant. Hence Nevanlinna hyperbolicity \Rightarrow Brody hyperbolicity. Also it is known that if $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ is holomorphic and $T_{f}\left(r, r_{1}\right) \leq_{\text {exc }} O(\log r)$, then f can be extended to a holomorphic map from $\mathbb{C} \cup\{\infty\}-\overline{\triangle\left(r_{0}\right)}$ to $\mathbb{P}^{n}(\mathbb{C})(M$. Green (1975), Siu (2015)). Hence Nevanlinna hyperbolicity \Rightarrow Picard hyperbolicity. (big Picard extension property).

Nevanlinna hyperbolicity implies algebraically hyperbolic

Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and $f: R \rightarrow X$ be holomorphic map with $f(R) \not \subset D$. We need to show that

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

for a positive $(1,1)$-form ω on X that is independent of R and f.

Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and $f: R \rightarrow X$ be holomorphic map with $f(R) \not \subset D$. We need to show that

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

for a positive $(1,1)$-form ω on X that is independent of R and f.
Fix a point $Q \in R$ such that $f(Q) \notin \operatorname{Supp}(D)$.

Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and $f: R \rightarrow X$ be holomorphic map with $f(R) \not \subset D$. We need to show that

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

for a positive $(1,1)$-form ω on X that is independent of R and f. Fix a point $Q \in R$ such that $f(Q) \notin \operatorname{Supp}(D)$. Riemann-Roch Theorem $\Rightarrow \exists$ a non-constant meromorphic function ψ on R with a single pole at Q of order less than or equal to $g+1$.

Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and $f: R \rightarrow X$ be holomorphic map with $f(R) \not \subset D$. We need to show that

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

for a positive $(1,1)$-form ω on X that is independent of R and f. Fix a point $Q \in R$ such that $f(Q) \notin \operatorname{Supp}(D)$. Riemann-Roch Theorem $\Rightarrow \exists$ a non-constant meromorphic function ψ on R with a single pole at Q of order less than or equal to $g+1$. Applying Nevanlinna hyperbolicity with $Y:=R \backslash\{Q\}$ and $\sigma:=|\psi|$,noticing $\varsigma \leq \frac{g+1}{2}$ and $\mathfrak{E}_{\sigma}(r)=O(1)$,

Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and $f: R \rightarrow X$ be holomorphic map with $f(R) \not \subset D$. We need to show that

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

for a positive $(1,1)$-form ω on X that is independent of R and f. Fix a point $Q \in R$ such that $f(Q) \notin \operatorname{Supp}(D)$. Riemann-Roch Theorem $\Rightarrow \exists$ a non-constant meromorphic function ψ on R with a single pole at Q of order less than or equal to $g+1$. Applying Nevanlinna hyperbolicity with $Y:=R \backslash\{Q\}$ and $\sigma:=|\psi|$,noticing $\varsigma \leq \frac{g+1}{2}$ and $\mathfrak{E}_{\sigma}(r)=O(1)$, there exists a positive $(1,1)$-form η on X such that
$T_{f, \eta}(r) \leq_{\text {exc }} \bar{N}_{f}(r, D)-\mathfrak{X}_{\sigma}(r)+(\delta+g+1) \log r+O(1)$. Note $\mathfrak{X}_{\sigma}(r)=\int_{1}^{r} \chi_{\sigma}(t) \frac{d t}{t}$, where $\chi_{\sigma}(t)$ is the Euler characteristic of the domain $B(t)$.

Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and $f: R \rightarrow X$ be holomorphic map with $f(R) \not \subset D$. We need to show that

$$
\int_{R} f^{*} \omega \leq \bar{n}_{f}(D)+\max \{0,2 g-2\}
$$

for a positive (1,1)-form ω on X that is independent of R and f. Fix a point $Q \in R$ such that $f(Q) \notin \operatorname{Supp}(D)$. Riemann-Roch Theorem $\Rightarrow \exists$ a non-constant meromorphic function ψ on R with a single pole at Q of order less than or equal to $g+1$. Applying Nevanlinna hyperbolicity with $Y:=R \backslash\{Q\}$ and $\sigma:=|\psi|$,noticing $\varsigma \leq \frac{g+1}{2}$ and $\mathfrak{E}_{\sigma}(r)=O(1)$, there exists a positive $(1,1)$-form η on X such that
$T_{f, \eta}(r) \leq_{\text {exc }} \bar{N}_{f}(r, D)-\mathfrak{X}_{\sigma}(r)+(\delta+g+1) \log r+O(1)$. Note $\mathfrak{X}_{\sigma}(r)=\int_{1}^{r} \chi_{\sigma}(t) \frac{d t}{t}$, where $\chi_{\sigma}(t)$ is the Euler characteristic of the domain $B(t)$. Hence, $\lim _{r \rightarrow \infty} \frac{\mathfrak{X}_{\sigma}(r)}{\log r}=\chi(R-\{p\})=\chi(R)-1=1-2 g$. From here, we can derive the desired inequality.

Using the method due to Brotbeck-Brunebarbe, we (He-Ru) can prove that $X \backslash D$ is hyperbolically embeddable in X implies that (X, D) is Nevanlinna hyperbolic.

Using the method due to Brotbeck-Brunebarbe, we (He-Ru) can prove that $X \backslash D$ is hyperbolically embeddable in X implies that (X, D) is Nevanlinna hyperbolic. We summerize our results in the following picture:

Using the method due to Brotbeck-Brunebarbe, we (He-Ru) can prove that $X \backslash D$ is hyperbolically embeddable in X implies that (X, D) is Nevanlinna hyperbolic. We summerize our results in the following picture:

So the notion of Nevanlinna hyperbolicity links and unifies the Nevanlinna theory, the complex hyperbolicity (Brody and Kobayashi hyperbolicity), the big Picard type extension theorem (more generally the Borel hyperbolicity), as well as the algebraic hyperbolicity.

The hyperplane case

The hyperplane case

Theorem.

The hyperplane case

Theorem. Let \mathcal{H} be a finite set of hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. Let $|\mathcal{H}|:=\cup_{H \in \mathcal{H}} H$. Then $\left(\mathbb{P}^{n}(\mathbb{C}),|\mathcal{H}|\right)$ is a Nevanlinna hyperbolic if and only if $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic.

The hyperplane case

Theorem. Let \mathcal{H} be a finite set of hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. Let $|\mathcal{H}|:=\cup_{H \in \mathcal{H}} H$. Then $\left(\mathbb{P}^{n}(\mathbb{C}),|\mathcal{H}|\right)$ is a Nevanlinna hyperbolic if and only if $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic.
The proof of this theorem goes as follows:

The hyperplane case

Theorem. Let \mathcal{H} be a finite set of hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. Let $|\mathcal{H}|:=\cup_{H \in \mathcal{H}} H$. Then $\left(\mathbb{P}^{n}(\mathbb{C}),|\mathcal{H}|\right)$ is a Nevanlinna hyperbolic if and only if $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic.
The proof of this theorem goes as follows: Recall that, in Min Ru, Amer. J. of Math. (1995), a set of hyperplanes \mathcal{H} (or linear forms \mathcal{L}) is called non-degenerate if $(1) \operatorname{dim}(\mathcal{L})=n+1$; (2) For any proper non-empty subset \mathcal{L}_{1} of \mathcal{L}

$$
\left(\mathcal{L}_{1}\right) \cap\left(\mathcal{L}-\mathcal{L}_{1}\right) \cap \mathcal{L} \neq \emptyset .
$$

The hyperplane case

Theorem. Let \mathcal{H} be a finite set of hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. Let $|\mathcal{H}|:=\cup_{H \in \mathcal{H}} H$. Then $\left(\mathbb{P}^{n}(\mathbb{C}),|\mathcal{H}|\right)$ is a Nevanlinna hyperbolic if and only if $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic.
The proof of this theorem goes as follows: Recall that, in Min Ru, Amer. J. of Math. (1995), a set of hyperplanes \mathcal{H} (or linear forms \mathcal{L}) is called non-degenerate if $(1) \operatorname{dim}(\mathcal{L})=n+1$; (2) For any proper non-empty subset \mathcal{L}_{1} of \mathcal{L}

$$
\left(\mathcal{L}_{1}\right) \cap\left(\mathcal{L}-\mathcal{L}_{1}\right) \cap \mathcal{L} \neq \emptyset .
$$

In 1995, we proved that $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic if only if \mathcal{H} is non-degenerate.

The hyperplane case

Theorem. Let \mathcal{H} be a finite set of hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. Let $|\mathcal{H}|:=\cup_{H \in \mathcal{H}} H$. Then $\left(\mathbb{P}^{n}(\mathbb{C}),|\mathcal{H}|\right)$ is a Nevanlinna hyperbolic if and only if $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic.
The proof of this theorem goes as follows: Recall that, in Min Ru, Amer. J. of Math. (1995), a set of hyperplanes \mathcal{H} (or linear forms \mathcal{L}) is called non-degenerate if $(1) \operatorname{dim}(\mathcal{L})=n+1$; (2) For any proper non-empty subset \mathcal{L}_{1} of \mathcal{L}

$$
\left(\mathcal{L}_{1}\right) \cap\left(\mathcal{L}-\mathcal{L}_{1}\right) \cap \mathcal{L} \neq \emptyset .
$$

In 1995 , we proved that $\mathbb{P}^{n}(\mathbb{C}) \backslash|\mathcal{H}|$ is Brody hyperbolic if only if \mathcal{H} is non-degenerate. So our approach is to show that $\left(\mathbb{P}^{n}(\mathbb{C}), \mathcal{H}\right)$ is a Nevanlinna hyperbolic if \mathcal{H} is non-degenerate.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case):

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X. We want to bound $T_{f, \omega}(r)$.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X. We want to bound $T_{f, \omega}(r)$. Let $k_{X \backslash D}$ be the infitesimal Kobayashi pseudometric on $X \backslash D$.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X. We want to bound $T_{f, \omega}(r)$. Let $k_{X \backslash D}$ be the infitesimal Kobayashi pseudometric on $X \backslash D$. Since $X \backslash D$ is hyperbolically imbedded in X, we have, for some $c>0, \omega(\xi) \leq c k_{X \backslash D}(\xi)$.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X. We want to bound $T_{f, \omega}(r)$. Let $k_{X \backslash D}$ be the infitesimal Kobayashi pseudometric on $X \backslash D$. Since $X \backslash D$ is hyperbolically imbedded in X, we have, for some $c>0, \omega(\xi) \leq c k_{X \backslash D}(\xi)$. On the other hand, by the distance decreasing property, we have $f^{*} k_{X \backslash D} \leq k_{\mathbb{C}-\overline{\Delta(1)}}$. Therefore, we get $f^{*} \omega \leq c \sqrt{-1} \frac{d z \wedge d \bar{z}}{|z|^{2} \log ^{2}|z|^{2}}$.

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X. We want to bound $T_{f, \omega}(r)$. Let $k_{X \backslash D}$ be the infitesimal Kobayashi pseudometric on $X \backslash D$. Since $X \backslash D$ is hyperbolically imbedded in X, we have, for some $c>0, \omega(\xi) \leq c k_{X \backslash D}(\xi)$. On the other hand, by the distance decreasing property, we have $f^{*} k_{X \backslash D} \leq k_{\mathbb{C}-} \overline{\Delta(1)}$. Therefore, we get $f^{*} \omega \leq c \sqrt{-1} \frac{d z \wedge d \bar{z}}{|z|^{2} \log ^{2}|z|^{2}}$. Hence

$$
\int_{r_{1} \leq|z| \leq \rho} f^{*} \omega \leq c\left(\int_{r_{1}}^{\rho} \frac{1}{t^{2} \log t} t d t\right)=c\left(\frac{1}{\log r_{1}}-\frac{1}{\log \rho}\right) .
$$

Hyperbolically embeddable implies Nevanlinna hyperbolicity

The simple case (Omit case): We give a new proof of Kwack and Kobayashi (K2)'s extension theorem: If $X \backslash D$ is hyperbolically imbedded into X, then (X, D) is Picard hyperbolic. Let $f: \mathbb{C}-\overline{\triangle\left(r_{0}\right)} \rightarrow X \backslash D$. Let ω be a positive $(1,1)$ form on X. We want to bound $T_{f, \omega}(r)$. Let $k_{X \backslash D}$ be the infitesimal Kobayashi pseudometric on $X \backslash D$. Since $X \backslash D$ is hyperbolically imbedded in X, we have, for some $c>0, \omega(\xi) \leq c k_{X \backslash D}(\xi)$. On the other hand, by the distance decreasing property, we have $f^{*} k_{X \backslash D} \leq k_{\mathbb{C}-\overline{\Delta(1)}}$. Therefore, we get $f^{*} \omega \leq c \sqrt{-1} \frac{d z \wedge d \bar{z}}{|z|^{2} \log ^{2}|z|^{2}}$. Hence

$$
\int_{r_{1} \leq|z| \leq \rho} f^{*} \omega \leq c\left(\int_{r_{1}}^{\rho} \frac{1}{t^{2} \log t} t d t\right)=c\left(\frac{1}{\log r_{1}}-\frac{1}{\log \rho}\right) .
$$

Thus, $T_{f, \omega}(r)=\int_{r_{1}}^{r}\left(\int_{r_{1} \leq|z| \leq \rho} f^{*} \omega\right) \frac{d \rho}{\rho} \leq C \log r$.

General case:

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current Ric $[\omega]=d d^{c}[\log \lambda]$,

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on Δ^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on Δ^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

Now consider $f: Y \rightarrow X$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on Δ^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

Now consider $f: Y \rightarrow X$. Let $\Sigma:=\left(f^{*} D\right)_{\text {red }}$ and Let $Y^{*}:=Y \backslash \Sigma$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on \triangle^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

Now consider $f: Y \rightarrow X$. Let $\Sigma:=\left(f^{*} D\right)_{\text {red }}$ and Let $Y^{*}:=Y \backslash \Sigma$. Note that Y^{*} is hyperbolic, and denote by $\omega_{Y^{*}}$ the Kobayashi metric on Y^{*}.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on \triangle^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

Now consider $f: Y \rightarrow X$. Let $\Sigma:=\left(f^{*} D\right)_{\text {red }}$ and Let $Y^{*}:=Y \backslash \Sigma$. Note that Y^{*} is hyperbolic, and denote by $\omega_{Y^{*}}$ the Kobayashi metric on Y^{*}. By the same argument before, there exists a constant $c>0$ such that $c f^{*} \eta \leq \omega_{Y^{*}}$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on \triangle^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

Now consider $f: Y \rightarrow X$. Let $\Sigma:=\left(f^{*} D\right)_{\text {red }}$ and Let $Y^{*}:=Y \backslash \Sigma$. Note that Y^{*} is hyperbolic, and denote by $\omega_{Y^{*}}$ the Kobayashi metric on Y^{*}. By the same argument before, there exists a constant $c>0$ such that $c f^{*} \eta \leq \omega_{Y^{*}}$. Hence $c T_{f, \eta}(r) \leq T_{\omega_{Y *}}(r):=\int_{1}^{r} \frac{d t}{t} \int_{Y[t]} \omega_{Y^{*}}$.

General case: Notations: $Y=$ Riemann surface, $\omega=\lambda \frac{\sqrt{-1}}{2 \pi} d z \wedge d \bar{z}=$ pseudo-metric on Y. Define $\operatorname{Ric}(\omega)=d d^{c} \log \lambda$. Then $\operatorname{Ric}(\omega)=-K \omega$ on $M \backslash \Sigma_{h}$. If $\log \lambda$ is locally integrable, then one can define the current $[\log \lambda]$, and the current $\operatorname{Ric}[\omega]=d d^{c}[\log \lambda]$, namely, $d d^{c}[\log \lambda](\phi)=\int_{M}(\log \lambda) d d^{c} \phi$ for any test function ϕ. Lemma. Let ψ be subharmonic on \triangle^{*} and bounded above. Then ψ extends to a subhar. function on \triangle. Hence $d d^{c}[\psi]$ is a positive measure and $\left[d d^{c} \psi\right] \leq d d^{c}[\psi]$.

Now consider $f: Y \rightarrow X$. Let $\Sigma:=\left(f^{*} D\right)_{\text {red }}$ and Let $Y^{*}:=Y \backslash \Sigma$. Note that Y^{*} is hyperbolic, and denote by $\omega_{Y^{*}}$ the Kobayashi metric on Y^{*}. By the same argument before, there exists a constant $c>0$ such that $c f^{*} \eta \leq \omega_{Y^{*}}$. Hence $c T_{f, \eta}(r) \leq T_{\omega_{Y *}}(r):=\int_{1}^{r} \frac{d t}{t} \int_{Y[t]} \omega_{Y^{*}}$.

We claim.
(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y. (b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

We claim.
(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y. (b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with $U^{*}:=U \backslash\{p\}=\triangle^{*}$.

We claim.
(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y. (b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with $U^{*}:=U \backslash\{p\}=\triangle^{*}$. Write $\omega_{Y^{*}} \mid U=a(z) \sqrt{-1} d z \wedge d \bar{z}$.

We claim.
(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y. (b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with $U^{*}:=U \backslash\{p\}=\triangle^{*}$. Write $\left.\omega_{Y^{*}}\right|_{U}=a(z) \sqrt{-1} d z \wedge d \bar{z}$. From Schwarz lemma, $a(z) \leq \frac{1}{|z|^{2} \log ^{2}\left(|z|^{2} \delta\right)}$.

We claim.
(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y. (b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with $U^{*}:=U \backslash\{p\}=\triangle^{*}$. Write $\omega_{Y^{*}} \mid U=a(z) \sqrt{-1} d z \wedge d \bar{z}$. From Schwarz lemma, $a(z) \leq \frac{1}{|z|^{2} \log ^{2}\left(|z|^{2} \delta\right)}$. Let $\psi(z)=a(z)|z|^{2}$, then $\log \psi$ is subharmonic in U^{*} (using $K_{\omega_{\gamma^{*}}}=-1$) and is bounded above from the above estimate.

We claim.
(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y.
(b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with
$U^{*}:=U \backslash\{p\}=\triangle^{*}$. Write $\left.\omega_{Y^{*}}\right|_{U}=a(z) \sqrt{-1} d z \wedge d \bar{z}$. From Schwarz lemma, $a(z) \leq \frac{1}{|z|^{2} \log ^{2}\left(|z|^{2} \delta\right)}$. Let $\psi(z)=a(z)|z|^{2}$, then $\log \psi$ is subharmonic in U^{*} (using $K_{\omega_{\gamma^{*}}}=-1$) and is bounded above from the above estimate. It extends as a subharmonic function on \triangle. Furthermore

$$
\begin{aligned}
{\left[\operatorname{Ric} \omega_{Y^{*}}\right]=\left[d d^{c} \log \psi\right] } & \leq d d^{c}[\log \psi]=d d^{c}\left[\log |z|^{2}\right]+d d^{c}[\log a] \\
& =[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right] .
\end{aligned}
$$

This proves (a) and (b).

We claim.

(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y.
(b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with
$U^{*}:=U \backslash\{p\}=\triangle^{*}$. Write $\omega_{Y^{*}} \mid U=a(z) \sqrt{-1} d z \wedge d \bar{z}$. From Schwarz lemma, $a(z) \leq \frac{1}{|z|^{2} \log ^{2}\left(|z|^{2} \delta\right)}$. Let $\psi(z)=a(z)|z|^{2}$, then $\log \psi$ is subharmonic in U^{*} (using $K_{\omega_{\gamma^{*}}}=-1$) and is bounded above from the above estimate. It extends as a subharmonic function on \triangle. Furthermore

$$
\begin{aligned}
{\left[\operatorname{Ric} \omega_{Y^{*}}\right]=\left[d d^{c} \log \psi\right] } & \leq d d^{c}[\log \psi]=d d^{c}\left[\log |z|^{2}\right]+d d^{c}[\log a] \\
& =[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right] .
\end{aligned}
$$

This proves (a) and (b). Now, using $\omega_{Y^{*}}=\operatorname{Ric} \omega_{Y^{*}}$ (since $K \equiv 1$), we get

$$
\begin{gathered}
T_{\omega_{Y^{*}}}(r)=T_{\operatorname{Ric} \omega_{Y^{*}}}(r) \leq \bar{N}_{f}(r, D)+\int_{1}^{r} \frac{d t}{t} \int_{Y[t]} \operatorname{Ric}\left[\omega_{Y^{*}}\right] \\
=\bar{N}_{f}(r, D)+T_{\operatorname{Ric}\left[\omega_{Y^{*}}\right]}(r)
\end{gathered}
$$

We claim.

(a) Both currents $\left[\operatorname{Ric} \omega_{Y^{*}}\right]$ and $\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ are well-defined on Y.
(b) $\left[\operatorname{Ric} \omega_{Y^{*}}\right] \leq[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right]$ holds on Y.

The statement is local, so we consider $p \in U$, with
$U^{*}:=U \backslash\{p\}=\triangle^{*}$. Write $\omega_{Y^{*}} \mid U=a(z) \sqrt{-1} d z \wedge d \bar{z}$. From Schwarz lemma, $a(z) \leq \frac{1}{|z|^{2} \log ^{2}\left(|z|^{2} \delta\right)}$. Let $\psi(z)=a(z)|z|^{2}$, then $\log \psi$ is subharmonic in U^{*} (using $K_{\omega_{\gamma^{*}}}=-1$) and is bounded above from the above estimate. It extends as a subharmonic function on \triangle. Furthermore

$$
\begin{aligned}
{\left[\operatorname{Ric} \omega_{Y^{*}}\right]=\left[d d^{c} \log \psi\right] } & \leq d d^{c}[\log \psi]=d d^{c}\left[\log |z|^{2}\right]+d d^{c}[\log a] \\
& =[\Sigma]+\operatorname{Ric}\left[\omega_{Y^{*}}\right] .
\end{aligned}
$$

This proves (a) and (b). Now, using $\omega_{Y^{*}}=\operatorname{Ric} \omega_{Y^{*}}$ (since $K \equiv 1$), we get

$$
\begin{gathered}
T_{\omega_{Y^{*}}}(r)=T_{\operatorname{Ric} \omega_{Y^{*}}}(r) \leq \bar{N}_{f}(r, D)+\int_{1}^{r} \frac{d t}{t} \int_{Y[t]} \operatorname{Ric}\left[\omega_{Y^{*}}\right] \\
=\bar{N}_{f}(r, D)+T_{\operatorname{Ric}\left[\omega_{Y^{*}}\right]}(r)
\end{gathered}
$$

But, by the standard Nevanlinna theory trick (Green-Jensen and calculus lemma), we can get (logarithmic derivative lemma)

$$
T_{\operatorname{Ric}\left[\omega_{\gamma^{*}}\right]}(r) \leq_{\text {exc }}(1+\delta)^{2} \log T_{\omega_{Y^{*}}}(r)-\mathfrak{X}_{\sigma}(r)+(\delta+2 \varsigma) \log r+O(1)
$$

But, by the standard Nevanlinna theory trick (Green-Jensen and calculus lemma), we can get (logarithmic derivative lemma)
$T_{\text {Ric }\left[\omega_{\gamma^{*}}\right]}(r) \leq_{\text {exc }}(1+\delta)^{2} \log T_{\omega_{Y^{*}}}(r)-\mathfrak{X}_{\sigma}(r)+(\delta+2 \varsigma) \log r+O(1)$.
This derives our desired inequality.

Some new result

Urata's type theorem:
Theorem. Let \bar{X} be a smooth projective variety over \mathbb{C} and let $D \subset \bar{X}$ be a divisor such that (\bar{X}, D) is Nevanlinna hyperbolic. If C is a smooth quasi- projective connected curve over \mathbb{C} with smooth projective model $\bar{C}, c \in \bar{C}(\mathbb{C})$, and $x \in \bar{X}(\mathbb{C})$, then the set of morphisms $\bar{f}: \bar{C} \rightarrow \bar{X}$ with $\bar{f}(C) \subset X$ and $\bar{f}(c)=x$ is finite.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that Theorem.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$. Let $\pi: \tilde{V} \rightarrow V$ be the blow up of the union of subschemes $D_{i} \cap D_{0}$ and let \tilde{D}_{i} be the strict transform of D_{i}.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$. Let $\pi: \tilde{V} \rightarrow V$ be the blow up of the union of subschemes $D_{i} \cap D_{0}$ and let \tilde{D}_{i} be the strict transform of D_{i}. Let $D=\tilde{D}_{1}+\cdots+\tilde{D}_{r}$.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$. Let $\pi: \tilde{V} \rightarrow V$ be the blow up of the union of subschemes $D_{i} \cap D_{0}$ and let \tilde{D}_{i} be the strict transform of D_{i}. Let $D=\tilde{D}_{1}+\cdots+\tilde{D}_{r}$. Then (\tilde{V}, D) is Nevanlinna hyperbolic.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$. Let $\pi: \tilde{V} \rightarrow V$ be the blow up of the union of subschemes $D_{i} \cap D_{0}$ and let \tilde{D}_{i} be the strict transform of D_{i}. Let $D=\tilde{D}_{1}+\cdots+\tilde{D}_{r}$. Then (\tilde{V}, D) is Nevanlinna hyperbolic. As a consequence, we obtain the following result regarding the divisibility and hyperbolicity.

Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y. Wang, we can prove that
Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r>n(n+1)$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$. Let $\pi: \tilde{V} \rightarrow V$ be the blow up of the union of subschemes $D_{i} \cap D_{0}$ and let \tilde{D}_{i} be the strict transform of D_{i}. Let $D=\tilde{D}_{1}+\cdots+\tilde{D}_{r}$. Then (\tilde{V}, D) is Nevanlinna hyperbolic. As a consequence, we obtain the following result regarding the divisibility and hyperbolicity.

Theorem. Let V be a Cohen-Macaulay complex projective variety of dimension n. Let $D_{0}, D_{1}, \ldots, D_{r}, r \geq n+1$, be effective Cartier divisors of V in general position. Suppose that there exist an ample Cartier divisor A on V and positive integers d_{i} such that $D_{i} \equiv d_{i} A$ and $d_{i} \geq d_{0}$ for all $0 \leq i \leq r$. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic map. Assume that the following
(i) $r>(n+1)^{2}$ and $\frac{1}{d_{i}} f^{*} D_{i} \leq \frac{1}{d_{0}} f^{*} D_{0}+O(1)$ for all $i=0, \ldots, r$;
or
(ii) $r>n^{2}+n+1$ and $\sum_{i=1}^{r} \frac{1}{d_{i}} f^{*} D_{i} \leq \frac{1}{d_{0}} f^{*} D_{0}+O(1)$.

Then f is constant.

As a special case of the above Theorem, we get Theorem. Let $n \geq 2, F_{1}, \ldots, F_{r}, G \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be polynomials in general position (i.e. the associated hypersurfaces are in general position) with $\operatorname{deg}\left(F_{i}\right) \geq \operatorname{deg}(G)$ for $i=1, \ldots, r$. Let h_{1}, \ldots, h_{n} be holomorphic functions on \mathbb{C} such that one of the following holds (i) $r>\frac{n(n+3)}{2}$ and $\frac{G\left(h_{1}, \ldots, h_{n}\right)}{F_{i}\left(h_{1}, \ldots, h_{n}\right)}$ is holomorphic, for $i=1, \ldots, r$; or (ii) $r>\frac{n^{2}+n+2}{2}$ and $\frac{G\left(h_{1}, \ldots, h_{n}\right)}{\prod_{i=1}^{F} F_{i}\left(h_{1}, \ldots, h_{n}\right)}$ is holomorphic.

Then $\left[h_{1}: \cdots: h_{n}\right.$] is constant.

