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Introduction

A central concept connecting the arithmetic and geometry of
varieties (manifolds) is the notion of hyperbolicity. In the one
dimensional case, the hyperbolic (compact) Riemann surfaces are
those whose genus is ≥ 2. For example,
X = {[x : y : z ] ∈ P2(C) | xn + yn = zn} when n ≥ 4. in 1983,
Faltings (Fields Medal 1986) proved that For the Fermat’s
equation xn + yn = zn, when n ≥ 4, it has only finitely many
solutions in k where k is any number field (the finite extension of
Q). Faltings actually proved the following stronger version
(known as Mordell’s conjecture): if V is a Riemann surface
defined over k which is hyperbolic, then there are only finitely
many k-points on V (k) for any number field k .
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There are several equivalent formulations of the concept of
hyperbolicity for a given projective manifold X ,

the simplest being
the non-existence of non-constant entire holomorphic curves
f : C→ X (Brody hyperbolic). According to Serge Lang, it is
believed that Assume X is a projective variety defined over k .
Then X is hyperbolic if and only if there are only finitely many
k-points on X (k) for any number field k .
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Various notions of hyperbolicity

Let M be a complex manifold.

Kobayashi hyperbolic. M is said to be Kobayashi hyperbolic
if the Kobayahsi pseudo-metric is a (true) metric. It is
motivated by the following Schwarz-Pick Lemma: Let
f : 4→ 4 be holomorphic. Then

|f ′(z)|
1− |f (z)|2

≤ 1

1− |z |2
,

i.e. f is distance decreasing with respect to Poincare metric.

Hence the Poincare metric ds2 =
4dzdz̄

(1− |z |2)2
on the unit disc

is holomorphically invariant. Kobayashi introduced a
pseudo-metric on M which is distance decreasing under
holomorphic maps by using the help of Poincare metric on the
unit disc.
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It can also be described through the Royden’s pseudo-length
function, of which the Kobayashi distance is the integrated form as
follows:

Let p ∈ M and v ∈ TpM, we define

RM(p, v) = inf

{
1

R

∣∣∣∣∣ there exists a holomorphic map f : 4(R)→ M

with f (0) = p, f ′(0) = v
}
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Brody hyperbolicity.

M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant.

Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody:

By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0.

Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.

Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity.

If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic,

,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M.

Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Brody hyperbolicity. M is said to be Brody hyperbolic if
every holomorphic map f : C→ M is constant. Kobayashi
implies Brody: By the distance decreasing property, for every
a, b ∈ C, dM(f (a), f (b)) ≤ dC(a, b) ≡ 0. Hence, since dM is
a distance, f (a) = f (b), which implies that f is constant.
Conversely, Brody proved that, if M is compact, then Brody
implies Kobayashi.

Picard hyperbolicity. If the “4∗-extension property” holds,
then M is said to be Picard hyperbolic, ,i.e., Every
holomorphic map f : 4∗ → M extends to a holomorphic map
f : 4→ M. Kwack and Kobayashi proved that if M is
Kobayashi hyperbolic and is also hyperbolically embedded in
some compactification M, then M is Picard hyperbolic.

Min Ru Nevanlinna and algebraic hyperbolicity



Algebraic hyperbolicity

Demailly observed that hyperbolicity of a projective variety X has
further boundness property for its height:

he proved that if X is
hyperbolic then there exists a positive (1,1)-form ω on X such that
for any compact Riemann surface R and every holomorphic map
f : R → X , we have

∫
R f ∗ω ≤ max{0, 2g − 2}. (We say that X is

algebraically hyperbolic if X has such property). Outline of the
proof: Let kX be the Kobayashi-Royden infinitesimal pseudo-norm
on X . ∃ c1 > 0 such that c1‖ · ‖ω ≤ kX . Denote by σR the
metric form on R with constant curvature of −1. By the
distance decreasing properties for Kobayashi distances,
kX (f∗ξ) ≤ kR(ξ) ≤ c‖ξ‖σR for some c > 0. Hence
c1‖f∗ξ‖ω ≤ c‖ξ‖σR . That is c2σR ≥ c2

1 f
∗(ω). Therefore, by taking

the integration over R and using the fact (Gauss-Bonnet formula)
that

∫
R σR = −

∫
R KRσR = 2g − 2.
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Algebraic hyperbolicity for log-pairs (X ,D)

Simple case: Let f : S → S ′ be holomorphic, where S , S ′ are
compact Riemann surfaces. We define
deg(f ) := #f −1(a) +

∑
p∈S ,f (p)=a(υf (p)− 1) for any a ∈ S ′, i.e.

the number of solutions of f (z) = a on S , counting multiplicities.
Riemann-Hurwitz Theorem. Let S ,S ′ be compact Riemann
surfaces with genus g and g ′. Then
(2g − 2) = (2g ′ − 2) deg(f ) +

∑
p∈S(υf (p)− 1).

Riemann’s relation. Let a1, . . . , aq ∈ S ′ and let
E = f −1({a1, . . . , aq}) ⊆ S . Then
(q − 2 + 2g ′) deg(f ) ≤ |E |+ (2g − 2). Height inequality.

Proof. For each aj ∈ S ′, from the definition,
deg(f ) := #f −1(aj) +

∑
p∈S ,f (p)=aj

(υf (p)− 1). Hence

q deg(f ) = #E +
∑

p∈E (υf (p)− 1). Using the fact∑
p∈E (υf (p)− 1) ≤

∑
p∈S(υf (p)− 1) and the Riemann-Hurwitz

theorem, we get q deg(f ) ≤ #E + (2g − 2) + (2− 2g ′) deg(f ).
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Let X be a projective variety and D be an effective divisor.

According to Xi Chen, (X ,D) is said to be algebraically hyperbolic
if ∃ a positive (1, 1)-form ω on X such that for any compact
Riemann surface R and every holomorphic map f : R → X , we
have ∫

R
f ∗ω ≤ n̄f (D) + max{0, 2g − 2},

where n̄f (D) is the number of points of f −1(D) on X and g is the
genus of R. Pacienza-Rousseau (J. Reine Angew. Math., 2007)
proved that X\D is hyperbolically embeddable in X ⇒ (X ,D) is
algebraically hyperbolic. Note: Brody hyperbolic ⇐ Kobayashi
hyperbolic ⇐ X\D is hyperbolically embeddable (strongest
condition). Ariyan Javanpeykar’s recent series of papers for (X ,D)
(especially the recent paper with A. Levin) assumes that X\D is
hyperbolically embeddable.
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Why estimates (height inequality) are important?

Urata proved that if X is hyperbolic, then for any projective
variety Y , y ∈ Y and x ∈ X , the set of morphisms f : Y → X
with f (y) = x is finite (is called geometrically hyperbolic).

If Tf ,η(r) ≤ O(1), then f : C→ X is constant. For

φ : C−4(r0)→ X\D, if Tφ(r) ≤exc O(log r), then φ can be

extended to a holomorphic map from C∪ {∞}−4(r0) to X ).

Lang’s conjecture: #X (k) <∞ (Mordellic) over k for every
number field k if X is defined over Q̄ and is hyperbolic. The
method in the arithmetic on proving the finiteness of rational
points is try to bound the height and then use the Northcott’s
theorem.

Ariyan Javanpeykar recently had a series of papers about the
arithmetic and geometric properties for an algebraic
hyperbolic X (the height inequality plays an important role).
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Nevanlinna theory (transcendental case): The height
inequalities (The Second Main Theorem)

Recall that X\D is Brody hyperbolic if every holomorphic map
f : C→ X\D is constant. So Brody hyperbolicity involves the
transcendental case. To get a quantitative statement (height
inequality) for the given pair (X ,D), we need bound the height.
Height: Let f : C→ X be holomorphic. We define, for a positive
(1, 1)-form η on X ,

Tf ,η(r) :=

∫ r

1

(∫
B(t)

f ∗η

)
dt

t
.

Similar to the height inequality:∫
R f ∗ω ≤ n̄f (D) + max{0, 2g − 2} for algebraic hyperbolicity of

(X ,D), we need to bound the height function Tf ,η(r) in terms of
the counting function Nf (r ,D) (Second Main Theorem).
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The First Main Theorem:

let D be an effective Cartier divisor on
X . Let sD be the canonical section of [D] (i.e. [sD = 0] = D) and
consider ‖s‖2 := |sα|2hα. By Poincare-Lelong formula,
−ddc [log ‖f ∗sD‖2] = −f ∗D + f ∗c1([D]). Applying

∫ t
1

dt
t

∫
|z|<t

and use Green-Jensen (Stoke’s theorem), we get the First Main
Theorem: Denote by Tf ,D(r) := Tf ,c1[D](r),

Tf ,D(r) = mf (r ,D) + Nf (r ,D) + O(1)

where mf (r ,D) = −
∫ 2π

0 log ‖sD(f (re iθ)‖dθ2π ,
nf ,D(r) :=

∑
a∈B(r) νf ∗D(a) be degree of f ∗D counted inside B(r),

and n
[k]
f ,D(r) denote its truncated version,

Nf (r ,D) :=
∫ r

1 nf ,D(t)dtt , and similarly N
[k]
f (r ,D) :=

∫ r
1 n

[k]
f ,D(t)dtt .

We also write N f (r ,D) := N
[1]
f (r ,D).
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Known results about the Second Main Theorem:

The Second Main
Theorem seeks to bound Tf ,c1[D](r) in terms of Nf (r ,D).

Nevanlinna 1929: Let f be meromorphic (non-constant) on
C and a1, ..., aq ∈ C ∪ {∞} distinct. Then, for any δ > 0,

(q − 2)Tf (r) ≤exc

q∑
j=1

N f (r , aj) + logTf (r) + δ log r .

H. Cartan, 1933 Let f : C→ Pn(C) be a linearly
nondegenerate holomorphic map. Let H1, . . . ,Hq be
hyperplanes on Pn(C) in general position, then, for δ > 0,

(q − (n + 1))Tf (r) ≤exc

q∑
j=1

N
[n]
f (r ,Hj)

+

(
n(n + 1)

2

)
(logTf (r) + δ log r) + O(1).
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Ru, 2009: Let f : C→ X be holo and Zariski dense,
D1, . . . ,Dq be divisors in general position in X . Assume that
Dj ∼ djA (A being ample). Then, for ∀ δ > 0,

(q−(n+1))Tf ,A(r) ≤exc

q∑
j=1

1

dj
Nf (r ,Dj)+C (log+ Tf ,A(r)+δ log r).

Bortbeck-Deng 2019 (Huynh-Vu-Xie, 2019): Let A be a
very ample line bundle over X . Let D ∈ |Am| be a general
smooth hypersurface with m ≥ (n + 2)n+3(n + 1)n+3. Let
f : C→ X be holomorphic with f (C) 6⊂ D, for δ > 0,

Tf ,A(r) ≤exc N f (r ,D) + C (log+ Tf ,A(r) + δ log r) + O(1).

Siu-Yeung, 1997 (Noguchi-W-Y). Let A be an abelian
variety and D be an ample divisor on A. Let f : C→ A be
holomorphic with f (C) 6⊂ D. Then

Tf ,D(r) ≤exc N
[k0]
f (r ,D) + C (log+ Tf ,D(r) + δ log r) + O(1).
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Nevanlinna hyperbolicity

To extend the notion of algebraic hyperbolicity to the
transcendental case, we replace R with an open parabolic Riemann
surface. A non-compact Riemann surface Y is parabolic if it
admits a parabolic exhaustion function σ : Y → [0,∞) such that
log σ is harmonic outside a compact subset of Y . Here we
restrict it to a special case, i.e., we further assume that

log σ is harmonic outside possibly a finite set
Σ := {P1, . . . ,Pk} on Y .

At each Pi ∈ Σ, in a coordinate chart (U, z) centered at Pi

that does not contain other points in Σ,
log σ(z) = ki log |z |+ hPi

(z), where hPi
is a harmonic function

on U.

Let B(r) := {y ∈ Y : σ(y) < r} and
S(r) := {y ∈ Y : σ(y) = r}. Let dµr = dc log σ|S(r). Let
ς :=

∫
S(r) dµr , which is is independent of r for r large enough.
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Let χσ(r) be the Euler characteristic of B(r), and define

Xσ(r) :=

∫ r

1
χσ(t)

dt

t
.

Fixing a nowhere vanishing global holomorphic vector field ξ on
Y , we define

Eσ(r) :=

∫
S(r)

log− |dσ(ξ)|2dµr ,

where, for a positive real number x , log+ x = max{0, log x} and
log− x = −min{0, log x}. We say that (X ,D) is Nevanlinna
hyperbolic if there is a positive (1, 1)-form η on X such that for
any parabolic Riemann surface Y and every holomorphic map
f : Y → X with f (Y ) 6⊂ D and for δ > 0, one has

Tf ,η(r) ≤exc N f (r ,D)−Xσ(r) + (δ + 2ς) log r + Eσ(r) + O(1).
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Note that the error term (δ + 2ς) appeared before log r is crucial.

When Y := C (the complex plane) together with exhaustion
function σ(z) = |z | is a parabolic Riemann surface with ς = 1

2 ,
Xσ(r) = log r ,Eσ(r) = O(1), so the error term is just
δ log r + O(1). In particular, if f (C) omits D, then
Tf ,η(r)) ≤exc δ log r + O(1), so f is constant. Hence Nevanlinna
hyperbolicity ⇒ Brody hyperbolicity. Also it is known that if
f : C−4(r0)→ Pn(C) is holomorphic and Tf (r , r1) ≤exc O(log r),
then f can be extended to a holomorphic map from
C∪ {∞}−4(r0) to Pn(C) (M. Green (1975), Siu (2015)). Hence
Nevanlinna hyperbolicity ⇒ Picard hyperbolicity. (big Picard
extension property).
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Nevanlinna hyperbolicity implies algebraically hyperbolic

Let R be a compact Riemann surface with genus g and
f : R → X be holomorphic map with f (R) 6⊂ D. We need to show
that ∫

R
f ∗ω ≤ n̄f (D) + max{0, 2g − 2}

for a positive (1, 1)-form ω on X that is independent of R and f .
Fix a point Q ∈ R such that f (Q) 6∈ Supp(D). Riemann-Roch
Theorem ⇒ ∃ a non-constant meromorphic function ψ on R with
a single pole at Q of order less than or equal to g + 1. Applying
Nevanlinna hyperbolicity with Y := R\{Q} and σ := |ψ|,noticing
ς ≤ g+1

2 and Eσ(r) = O(1), there exists a positive (1, 1)-form η
on X such that
Tf ,η(r) ≤exc N f (r ,D)− Xσ(r) + (δ + g + 1) log r + O(1). Note
Xσ(r) =

∫ r
1 χσ(t)dtt , where χσ(t) is the Euler characteristic of the

domain B(t). Hence,

limr→∞
Xσ(r)
log r = χ(R − {p}) = χ(R)− 1 = 1− 2g . From here, we

can derive the desired inequality.
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Theorem ⇒ ∃ a non-constant meromorphic function ψ on R with
a single pole at Q of order less than or equal to g + 1. Applying
Nevanlinna hyperbolicity with Y := R\{Q} and σ := |ψ|,noticing
ς ≤ g+1

2 and Eσ(r) = O(1), there exists a positive (1, 1)-form η
on X such that
Tf ,η(r) ≤exc N f (r ,D)− Xσ(r) + (δ + g + 1) log r + O(1). Note
Xσ(r) =

∫ r
1 χσ(t)dtt , where χσ(t) is the Euler characteristic of the

domain B(t). Hence,

limr→∞
Xσ(r)
log r = χ(R − {p}) = χ(R)− 1 = 1− 2g . From here, we

can derive the desired inequality.
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Using the method due to Brotbeck-Brunebarbe, we (He-Ru) can
prove that X\D is hyperbolically embeddable in X implies that
(X ,D) is Nevanlinna hyperbolic.

We summerize our results in the
following picture:

X \ D is hypb. embedded (X ,D) is a Nevanlinna hypb.

X \ D is Borel hyperbolic

X \ D is Picard hyperbolic

X \ D is Brody hyperbolic

(X ,D) is algebraically hyperbolic

So the notion of Nevanlinna hyperbolicity links and unifies the
Nevanlinna theory, the complex hyperbolicity (Brody and
Kobayashi hyperbolicity), the big Picard type extension theorem
(more generally the Borel hyperbolicity), as well as the algebraic
hyperbolicity.
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The hyperplane case

Theorem. Let H be a finite set of hyperplanes in Pn(C). Let
|H| := ∪H∈HH. Then (Pn(C), |H|) is a Nevanlinna hyperbolic if
and only if Pn(C)\|H| is Brody hyperbolic.
The proof of this theorem goes as follows: Recall that, in Min
Ru, Amer. J. of Math. (1995), a set of hyperplanes H (or linear
forms L) is called non-degenerate if (1) dim(L) = n + 1; (2) For
any proper non-empty subset L1 of L

(L1) ∩ (L− L1) ∩ L 6= ∅.

In 1995, we proved that Pn(C)\|H| is Brody hyperbolic if only if
H is non-degenerate. So our approach is to show that
(Pn(C),H) is a Nevanlinna hyperbolic if H is non-degenerate.
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Hyperbolically embeddable implies Nevanlinna
hyperbolicity

The simple case (Omit case): We give a new proof of Kwack
and Kobayashi (K2)’s extension theorem: If X\D is hyperbolically
imbedded into X , then (X ,D) is Picard hyperbolic. Let
f : C−4(r0)→ X\D. Let ω be a positive (1, 1) form on X .
We want to bound Tf ,ω(r). Let kX\D be the infitesimal Kobayashi
pseudometric on X \D. Since X\D is hyperbolically imbedded in
X , we have, for some c > 0, ω(ξ) ≤ ckX\D(ξ). On the other
hand, by the distance decreasing property, we have
f ∗kX\D ≤ kC−4(1). Therefore, we get f ∗ω ≤ c

√
−1 dz∧dz̄
|z|2 log2 |z|2 .

Hence∫
r1≤|z|≤ρ

f ∗ω ≤ c

(∫ ρ

r1

1

t2 log t
tdt

)
= c

(
1

log r1
− 1

log ρ

)
.

Thus, Tf ,ω(r) =
∫ r
r1

(∫
r1≤|z|≤ρ f

∗ω
)

dρ
ρ ≤ C log r .
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General case:

Notations: Y=Riemann surface,
ω = λ

√
−1

2π dz ∧ dz̄=pseudo-metric on Y . Define
Ric(ω) = ddc log λ. Then Ric(ω) = −Kω on M\Σh. If log λ is
locally integrable, then one can define the current [log λ], and the
current Ric[ω] = ddc [log λ], namely,
ddc [log λ](φ) =

∫
M(log λ)ddcφ for any test function φ.

Lemma. Let ψ be subharmonic on 4∗ and bounded above. Then
ψ extends to a subhar. function on 4. Hence ddc [ψ] is a positive
measure and [ddcψ] ≤ ddc [ψ].

Now consider f : Y → X . Let Σ := (f ∗D)red and Let
Y ∗ := Y \Σ. Note that Y ∗ is hyperbolic, and denote by ωY ∗ the
Kobayashi metric on Y ∗. By the same argument before, there
exists a constant c > 0 such that cf ∗η ≤ ωY ∗ . Hence
cTf ,η(r) ≤ TωY∗ (r) :=

∫ r
1

dt
t

∫
Y [t] ωY ∗ .
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We claim.
(a) Both currents [RicωY ∗ ] and Ric[ωY ∗ ] are well-defined on Y .
(b) [RicωY ∗ ] ≤ [Σ] + Ric[ωY ∗ ] holds on Y .

The statement is local, so we consider p ∈ U, with
U∗ := U\{p} = 4∗. Write ωY ∗ |U = a(z)

√
−1dz ∧ dz̄ . From

Schwarz lemma, a(z) ≤ 1
|z|2 log2(|z|2δ)

. Let ψ(z) = a(z)|z |2, then

logψ is subharmonic in U∗ (using KωY∗ = −1) and is bounded
above from the above estimate. It extends as a subharmonic
function on 4. Furthermore

[RicωY ∗ ] = [ddc logψ] ≤ ddc [logψ] = ddc [log |z |2] + ddc [log a]

= [Σ] + Ric[ωY ∗ ].

This proves (a) and (b). Now, using ωY ∗ = RicωY ∗ (since
K ≡ 1), we get

TωY∗ (r) = TRicωY∗ (r) ≤ N̄f (r ,D) +

∫ r

1

dt

t

∫
Y [t]

Ric[ωY ∗ ]

= N̄f (r ,D) + TRic[ωY∗ ](r).
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But, by the standard Nevanlinna theory trick (Green-Jensen and
calculus lemma), we can get (logarithmic derivative lemma)

TRic[ωY∗ ](r) ≤exc (1+δ)2 logTωY∗ (r)−Xσ(r)+(δ+2ς) log r+O(1).

This derives our desired inequality.
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Some new result

Urata’s type theorem:
Theorem. Let X̄ be a smooth projective variety over C and let
D ⊂ X̄ be a divisor such that (X̄ ,D) is Nevanlinna hyperbolic. If
C is a smooth quasi- projective connected curve over C with
smooth projective model C̄ , c ∈ C̄ (C), and x ∈ X̄ (C), then the set
of morphisms f̄ : C̄ → X̄ with f̄ (C ) ⊂ X and f̄ (c) = x is finite.
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Motivated recent preprint of E. Rousseau, A. Turchet and J. Z-Y.
Wang, we can prove that

Theorem. Let V be a Cohen–Macaulay complex projective
variety of dimension n. Let D0,D1, ...,Dr , r > n(n + 1), be
effective Cartier divisors of V in general position. Suppose that
there exist an ample Cartier divisor A on V and positive integers di
such that Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let π : Ṽ → V
be the blow up of the union of subschemes Di ∩ D0 and let D̃i be
the strict transform of Di . Let D = D̃1 + · · ·+ D̃r . Then (Ṽ ,D)
is Nevanlinna hyperbolic. As a consequence, we obtain the
following result regarding the divisibility and hyperbolicity.
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the strict transform of Di . Let D = D̃1 + · · ·+ D̃r . Then (Ṽ ,D)
is Nevanlinna hyperbolic.

As a consequence, we obtain the
following result regarding the divisibility and hyperbolicity.
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Theorem. Let V be a Cohen–Macaulay complex projective variety
of dimension n. Let D0,D1, ...,Dr , r ≥ n + 1, be effective Cartier
divisors of V in general position. Suppose that there exist an
ample Cartier divisor A on V and positive integers di such that
Di ≡ diA and di ≥ d0 for all 0 ≤ i ≤ r . Let f : C→ X be a
holomorphic map. Assume that the following
(i) r > (n + 1)2 and 1

di
f ∗Di ≤ 1

d0
f ∗D0 + O(1) for all i = 0, . . . , r ;

or
(ii) r > n2 + n + 1 and

∑r
i=1

1
di
f ∗Di ≤ 1

d0
f ∗D0 + O(1).

Then f is constant.

Min Ru Nevanlinna and algebraic hyperbolicity



As a special case of the above Theorem, we get
Theorem. Let n ≥ 2, F1, ...,Fr ,G ∈ C[X1, ...,Xn] be polynomials in
general position (i.e. the associated hypersurfaces are in general
position) with deg(Fi ) ≥ deg(G ) for i = 1, . . . , r . Let h1, ..., hn be
holomorphic functions on C such that one of the following holds
(i) r > n(n+3)

2 and G(h1,...,hn)
Fi (h1,...,hn) is holomorphic, for i = 1, ..., r ; or

(ii) r > n2+n+2
2 and G(h1,...,hn)∏r

i=1 Fi (h1,...,hn)
is holomorphic.

Then [h1 : · · · : hn] is constant.
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